An introduction to QGRAF 3.0

P. Nogueira!

CFIF, Edificio Ciéncia (Fisica), Instituto Superior Técnico,
1049-001 Lisboa, Portugal.

Contents

Intro

Strings, identifiers, and the such
Model configuration

The input statements

Intrinsic representation of diagrams
Output control I

Output control 11

The screen output

9. Symmetric theories

10. Installation

11. Update

12. Final comments

P NSO

I Researcher of the Technical University of Lisbon

1. Intro

QGRAF is a computer program for generating Feynman diagrams — more precisely,
symbolic descriptions of Feynman diagrams — in quantum field theories. Its output, which
the user can control in a number of ways, consists of a list of diagrams that match the input
constraints; the sign — the one which follows from anti-commutation relations — and the
symmetry factor of every diagram are also provided. QGRAF does not perform any other field
theoretic calculation, however.

This program was created to automate the often tedious task of writing down Feynman
diagrams and their symbolic amplitudes, especially when the number of Feynman diagrams is
large. QGRAF is mainly directed at writing the amplitudes in terms of products of the matrix
elements that follow from the Feynman rules, with no further processing. By presenting the
symbolic amplitudes in a raw form it provides a common starting point for different types of
calculations.

In the following sections we will try to describe in some detail how to use this program.
A general description of the algorithm may be found in ref. [1]. Please note that the current
version of the program does not generate vacuum diagrams, ie diagrams with no external

fields.

2. Strings, identifiers, and the such

Let us start with a discussion on some very basic points regarding the input to be read
by QGRAF. The alphabet to be used explicitly in the records read by the program is a subset
of ASCII, namely the subset which contains the printable characters with codes ranging from
32 (blank) to 126 (tilde). This includes all the letters from A to Z (both lowercase and
uppercase), the digits 0 through 9, parenthesis, braces, and several more symbols. Note in
particular that ASCII character 9 (tab) is excluded. Some additional characters could be
added to that alphabet — like the characters used to mark the end of the record/line, or
the end of the file — with the understanding that they are control characters and their use
occurs at a different level (the exact list even depends on the operating system or file system
used). Hereafter we will often do our best to pretend they are not there.

Some types of strings are more relevant than others, so let us single out the ones that
will be referred to later on. An identifier is a string made of letters, digits, and underscores,
with the condition that the first character is a letter. Upper and lower case are not equivalent.
The following strings provide three examples of identifiers.

spin F_0 csi___

Depending on what the output of QGRAF is used for, a more restricted class of identifiers may
have to be used; for example, if the output is to be processed by a computer algebra system
the identifiers used by QGRAF will have to be recognized as such by that program.

An integer is a sequence of digits, possibly preceded by a plus or minus sign: for
instance, -0, +17, and 1234567 are integers. A rational is either an integer or a sequential
concatenation of (a) an integer, (b) ASCII character 47 (slash), and (c) a nonzero unsigned
integer; some examples are +0/5 and 3/7.

Note that the charaters mentioned in any of the above definitions (for identifiers, inte-
gers, and rationals) are the only ones allowed. In particular, blank spaces are not allowed in
those strings, although they are permitted in a different type of strings that will be described
in the next paragraphs. When dealing with strings containing blanks it is often convenient to
use the symbol |, — the so called visible space [2]. This symbol allows one to clarify whenever
a blank is indeed part of a string, or where a record does begin, or end (if there are leading
and/or trailing blanks).

Let us now specify a way to build strings that are accepted as indivisible by QGRAF, not
parsed in the usual way, even if those strings contain several components such as identifiers,
integers, punctuation marks, etc. For example, suppose one wants the program to accept the
string

Quantum Electrodynamics in D=4-epsilon dimensions

as a single object. A possible solution to that problem consists in encoding the desired string
into another one that cannot be confused with the other types of strings (identifiers, integers,
rationals) and then supply the encoded string to QGRAF — which will simply decode it.

The right quote (ASCII character 39, also known as apostrophe) plays a special role
in the encoding algorithm that was implemented. To encode a string is straightforward: first
duplicate every right quote (ie replace each such character by two consecutive ones) and then
add a right quote to each end of the resulting string. The encoded form of the above string
is simply

‘Quantum Electrodynamics in D=4-epsilon dimensions’

Here are other examples: the empty string is encoded by the length 2 string ’’; a string
consisting of a right quote is encoded into the length 4 string ’’°’. This type of encoding
will be referred to by the designation normal-encoding. This encoding is exactly the one used
in FORTRAN source programs, as it is well known (note, however, that the syntax for string
concatenation is different — see below).

Records read by the program are limited to 80 printable characters, at least if the
internal parameters are not changed. This condition places an effective bound on eg the
size of identifiers, since an identifier cannot be broken into components. However, strings
that are presented to the program in encoded form can escape that limit: before being
encoded, any such string may be decomposed into several components, and then the encoded
strings corresponding to those components can be written sequentially, either on the same
line (separated by at least one blank!) or on consecutive lines (more on this later). For
example, the string

*f(x)=, 1+sin(x)’

is not the normal-encoding of any (single) string, but it will be interpreted by the program
as a representation of the string
f(x)=1+sin(x)

since the concatenation is implicit. We will say that a string ¢ is an encoding of another
string s iff £ will be decoded as s, irrespectively of whether the encoding is normal or not.
Hence a string may have numerous encodings.

3. Model configuration

3.1 The minimal description

Every model should be described in a file (hereafter called the model file) to be supplied
by the user. The model file is formally divided into three sections, but the first of those is
optional and will be described later. The first required section contains the declarations for
the propagators and the last section contains the vertex declarations. For example, in the
case of quantum electrodynamics the model file may look like this:

%uuconstants

huupropagators
Lulelectron, positron, -]

uu [photon, photon, +]

huoelectromagnetic vertex

uulpositron,electron,photon]

Lines that start with any of the characters # (hash mark), % (percent sign), or *
(asterisk) are ignored by the program and thus they can be used to write comments. The
blanks that are present in the model file (and are not part of comment lines) serve mainly two
purposes: to represent real blanks in encoded strings, or simply to isolate strings from one
another. Frequently, they are not even needed for the latter purpose since other punctuation
marks already fulfil that role.

Fields (or particles) are denoted by identifiers. In the above example there are three
fields: electron, positron, and photon. There are two propagators and one vertex.

The basic syntax for the declaration of a propagator is

[part_1, part_2, s],

where part_1 and part_2 are fields and s is the sign of the propagator (’plus’ for bosonic fields,
ie fields satisfying commutation relations, and 'minus’ for fermionic fields). The field part_1 is
the conjugate of part_2, and vice-versa; if part_1 and part_2 are the same field then we have
a self-conjugate field. As it happens with ghost fields, sometimes part_1 and part_2 are not
really particle and anti-particle; nevertheless part_1 and part_2 will be called (respectively)
the particle and the anti-particle, in an absolute sense. What we call propagator represents
a non-trivial contraction — ie vacuum expectation value of the time ordered product — of a
pair of free fields. Graphically, it is simply a type of (possibly oriented) edge.
The basic syntax for the declaration of an interaction vertex of degree n is

[part_1, part 2,...,partmn].

Interactions are usually cubic or quartic, but in rare situations (eg exotic gauges, effective
models) there will be interactions of higher degree. QGRAF will accommodate for this (degrees

in the range 3-6 are accepted by default, higher values require changing the value of a pa-
rameter in the source code). Some thought should be given to the ordering of the fields in
the vertex declarations, making sure that each such declaration is consistent with the respec-
tive Feynman rule. For instance, when anti-commuting fields are present — as in the above
example — one should not write [electron,positron,photon] if one has a Feynman rule
that applies to the ordering @E@bA,“ or else wrong signs may appear. Similar considerations
apply to the propagator: one should use [electron,positron,-] to define the propagator
<P >.

Different declarations should be written on different lines. Declarations can extend
across several consecutive lines provided the line breaks are consistent (this means that every
‘component’” — identifier, number, etc — must be contained wholly in a single line, and
neither blank lines nor comment lines should be present in the middle of a declaration).

3.2 More parameters

The syntax declaration presented above is — let us stress it — the basic, minimal
syntax. It lets us set the combinatorial description of the model, that is, what kind of lines
there are and how they are allowed to meet at the nodes of the graphs (as well as whether
the fields follow commuting or anti-commuting relations). That syntax must be extended to
provide the ability to define parameters like mass, spin, charge, or even more complex objects
representing Feynman rules, form factors, etc.

QGRAF allows users to define functions for fields, propagators, and vertices. Each
such function — which maps either fields, propagators, or vertices to character strings — is
represented by its own (freely chosen) identifier. If a function f has a finite domain then it
can be specified by means of a finite number of assignements of the form z — f(z) — not
unlike a tabular definition — without using a generic ‘formula’. That is the approach used
in the program: to define a vertex function in the model file we simply have to state, in
the declaration of every vertex, the image of the vertex under that function (see below for
the exact notation). The same goes for propagator functions (just replace the word ‘vertex’
by ‘propagator’). Defining a field function is just slightly less trivial: every propagator
declaration should contain either a single image or a pair of images (according to number of
distinct fields that compose the propagator). Those images should be declared on the right
hand side of the propagator and/or vertex declarations, which is separated from the left hand
side by a semicolon.

A basis for the discussion of the extended syntax can be obtained from a suitable
modification of the model file presented in the preceding subsection. Here is the new version,
this time without visible spaces:

% constants

% propagators
[electron, positron, - ; C= (°-1’, ’+1’), m= ’me’]

[photon, photon, +; C = (°0’), m= 'm0’]

% electromagnetic vertex

[positron,electron,photon; gpow = ’1°]

In this example the function C maps electron to -1, positron to +1, and photon to 0
(one may think of C as the electric charge); the function gpow maps the single vertex to 1
(this could be the power of the coupling constant appearing in the vertex Feynman rule);
finally, m (this could stand for the mass) maps the fermionic propagator to me and the bosonic
propagator to mo.

The notation for declaring the images of vertices and/or propagators is

function_id = S,

where function_id is the function identifier and S is the image (an encoded string). In the
case of field functions the notation is either

function.id = (S_.1 , S.2),
if the particle is different from the anti-particle, or
functionid = (S)

in the opposite case (8, S_1, and S_2 denote encoded strings). It is clear that a propagator
function is a special case of a field function, and can always be rewritten as such.

A simplification that is allowed in the definition of functions is the following: an
image may be written unencoded whenever it is a valid identifier, integer, or rational (length
allowing). Hence the previously presented model file can be simplified as follows.

% constants

% propagators
[electron, positron, - ; C= (-1, +1), m= mel
[photon, photon, +; C = (0), m= m0]

% electromagnetic vertex
[positron,electron,photon; gpow = 1]

Here are also some examples of declarations where that kind of simplification is not permitted:
(1)x=77,(2)s = 17, (3) sum= ’2+1°, (4) key= ’a b’, (5) v .= ’(0)?, (6) rp = *)°.

3.3 Two optional keywords

There are two mutually exclusive keywords that can be used in the propagator decla-
rations and which serve to further characterize the fields from the model file. The keyword
notadpole is used to prevent the program from generating diagrams containing one-point
functions of the field(s) declared in the statement where that keyword is used. If one modifies
the previous declaration for the photon field and writes

[photon, photon, +, notadpole; C = (0), m= mO]

then diagrams with tadpoles of the field photon will be systematically suppressed.
The keyword external is used to specify that the field(s) to which it applies cannot be
present as propagators of the diagrams generated by the program. In the following example

[Phi, Phi, +, externall]

the field Phi is then a kind of external source (the program does not count external lines as
propagators).

4. The input statements

4.1 The required statements

The basic instructions for QGRAF should be listed in the file qgraf .dat . The following
example will help us discussing them in detail.

output = ’qlist’ ;

style = ’qgraf.sty’ ;
model = ’qed.’ ;

in = electron, positron ;
out = photon, photon ;
loops = 2 ;

loopmomentum = k ;
options = onshell, floop;

Most of the structure of that file must be preserved; for example, those statements
should not be removed, not even reordered. The statements no longer need to fit on a single
line, and the restrictions for line breaking are exactly those that have been stated for the
model file. Comment lines may also be present and are analogous to those of the model file.
There are some optional statements (not listed above) that may be used to place further
restrictions on the list of generated diagrams, but those will be discussed later.

Let us now analyze the eight required statements. The first statement declares the
output file, in this case the file qlist . If this file already exists then the program will abort;
for safety reasons, no overwriting is attempted. Specifying an empty filename (ie writing
output = ’’ ;) will tell the program not to generate the diagram list; it will still run and
print a summary on the default output, usually the screen, but it will not create a list of
diagrams. Unless one knows in advance that the number of diagrams is not too large, one
should consider performing a first run without listing the diagrams in a file just to make sure
the output will be of any use (and also to prevent filling up the computer disk).

The filename should be written in encoded form, as discussed in section 2. It should be
noted, however, that any leading and/or trailing blanks in the filename will just be ignored.
These rules apply also to filenames in other statements.

The second statement declares the style file, that is, the file that tells QGRAF how to
present the diagram listing. The output style can be defined rather arbitrarily (see sections
‘Output control I’ and ‘Output control II’ for details).

The third statement declares the model file. Statements four and five define the
incoming and outgoing fields, respectively. It is also possible to specify the external momenta
The statements

in = electron[pl], positron[p2] ;
out = photon[ql], photon[qg2] ;

define both the external fields and their momenta: for example, p1l is the momentum of the
electron, flowing inwards, and q1 is the momentum of the first photon, flowing outwards. If
at least one momentum is declared, then all momenta must be declared. If no momentum

is declared the program uses the default momenta, which are defined as follows: p1, p2, p3,
etc, for the incoming fields and q1, g2, g3, and so on, for the outgoing fields (respecting
the order in which the fields were declared). Hence in the specific case of the above two
statements, the momenta declarations could as well be omitted. The momenta should be
identifiers; composite momenta like -p1, p3-p1, or +k cannot be used. Also, conflict with the
integration momenta should be avoided.

The sixth statement specifies the number of loops of the diagrams. Statement seven
defines the common prefix of the integration momenta associated to loops, which must be an
identifier too. For instance, if this momentum prefix is equal to k and the number of loops is
equal to 2 then the two (symbolic) integration momenta will be k1 and k2.

The last required statement allows one to specify a number of (mostly) topological
properties that the Feynman diagrams should have. If no keywords are stated (options = ;)
then all the connected diagrams satisfying the constraints imposed by the earlier statements
will be generated. To make QGRAF discard certain types of diagrams (like 1-particle reducible
diagrams, diagrams with tadpoles, etc) one simply has to list the appropriate keywords,
separated by commas.

4.2 The optional keywords

Before describing the available options it is convenient to present some terminology.
A 1-particle reducible diagram is one that can be disconnected by the removal of an internal
edge; such an edge will be called a bridge. If some bridge carries zero momentum, no matter
what the external momenta are — it is understood that the conservation of momentum is used
at every vertex — it will be called a singular bridge; a bridge that is not singular is regular.
A tadpole is part of a diagram connected to the rest of the diagram by a singular bridge. The
diagram from fig. la contains a regular and a singular bridge (r and s, respectively); deleting
s will clearly display the tadpole.

k1
A

Fig. 1. Two snails but only one tadpole.

A snail is either a tadpole or a collapsed tadpole (ie one that can be obtained from
a tadpole by eliminating the singular bridge defining the tadpole and merging the endnodes
of that bridge into a single node). The diagrams in fig. 1 contain one snail each, the snail
on the right being a collapsed version of the one on the left. These definitions apply even if
nodes of higher degree are present.

Here is the list of the available options, together with a short explanation.

e onepi — l-particle irreducible diagrams only

10

e onshell — no self-energy insertions on the external lines

e nosigma — no self-energy insertions (nowhere)

e nosnail — no snails

e notadpole — no tadpole insertions, ie no 1-point insertions

e simple — at most one propagator connecting any two different vertices, and no prop-
agator starting and ending at the same vertex

The converse of these options are also available. Each of the following options

onepr

offshell
sigma
snail

tadpole

notsimple

rejects the diagrams validated by its counterpart, and vice-versa. It should be noted that all
the above constraints are 'topological’, that is, there is no reference to fields; it is not the
whole diagram that matters, only the underlying graph. In addition, these options may be
used in any combination, since they all eliminate some classes of diagrams.

Two other options are also allowed in special situations. When dealing with QED one
may want to make use of Furry’s theorem, and in that case the following option is available.

e floop — no graphs in which fermion loops have an odd number of interactions

As discussed in ref. [1], QGRAF generates diagrams by first generating a ‘topology’ (the un-
derlying graph, consisting of nodes and edges), then finding all consistent ways of fitting the
external fields and the interaction vertices, then proceeding to generate the next topology,
etc. Consider now a different algorithmic flow: imagine that after finding a valid diagram the
program would stop trying to find other diagrams with the same topology and would instead
generate another topology. That would allow one to obtain an exact list of all the topologies
that are present in the corresponding (complete) list of Feynman diagrams. The following
option provides exactly that.

e topol — discards diagrams whose (unlabelled) topology is equal to that of an earlier
generated diagram (to be used with a single neutral field, only)

4.3 The optional statements

Since the set of options just described is clearly insufficient other ways of selecting
diagrams were implemented into the program. The generic form of those constraints is

<logical> = <operator> [<arg_1>,<arg2>, ... <argk>] ;

11

where <logical> is either true or false and <operator> is one of the following keywords.

bridge
chord

iprop
rbridge
sbridge

The number of arguments £ must be equal to or greater than 2, and the last two arguments
— ie those with indices k—1 and k& — should be non-negative integers, composed of at most
four digits; furthermore, of those two arguments, the first should not exceed the second. The
remaining arguments (if there are any) should be fields. Whenever present, those statements
should come after the options statement.

To restrict the number of propagators of the field phi one may write eg

true = ipropl phi ,3, 7] ;

This statement selects diagrams for which the number of propagators of the field phi is at
least 3 and at most 7. If one replaces true by false then the diagrams selected are the ones
in which the number of propagators of the field phi is either less than 3 or greater than 7.
The role of the two numerical arguments is similar for all operators, only the quantity being
constrained varies.

On other occasions one might be interested in propagators with certain topological
properties. The operators chord (and bridge) enumerate propagators which belong (re-
spectively, don’t belong) to a loop. Bridges can be split into regular and singular ones, as
explained, hence the operators rbridge and sbridge. For example, the statement

false = chord [photon,0, 0] ;

requires that there is at least one propagator of the field photon in a loop.
All these operators may have several fields as arguments. For instance, the statement

true = rbridge [photon, electron,2,2] ;

constrains the sum of the numbers of regular bridges with propagators of the fields photon
and electron, respectively. In general, each field argument always contributes to the sum
even if it is a duplicate; also, it does not matter whether a propagator is represented by the
particle or the anti-particle. One may also have no field argument at all as in

false = bridge [1, 3] ;

in which case the total number of bridges is restricted.

It may be observed that this type of statements may obviate the need for the optional
keywords notadpole and external in the model file. In fact, statements like the following
produce (respectively) the same effect.

true = sbridgel[photon, 0, O];
true = iprop[Phi, 0, 0 1 ;

The model file is intended as something fairly permanent, not something one should change
temporarily for a single calculation and then change back again, especially if the same effect
can be accomplished in the file qgraf .dat. However, both possibilities exist.

12

5. Intrinsic representation of diagrams

This section presents a number of technicalities that will be needed for understanding
and controlling the output of the program. To begin with, let us present some terminology.
Apart from Feynman diagrams — viewed as pure combinatorial objects — sometimes we will
also consider the underlying graphs, as if the Feynman diagrams had been stripped of their
fields. When referring to those graphs we will use the terms node and edge. The external
nodes are the nodes of degree one associated with the external fields, while the remaining
nodes are called internal nodes. Similarly, an external edge is an edge that is incident to an
external node, and any other edge is called internal. When referring to a Feynman diagram
we will use the terms verter and propagator; these terms are the analogue of internal node
and internal edge, respectively, but they are meant to include the information about the
attached fields.

The representations of a Feynman diagram that can be obtained in the output file are
based on a set of indices that label the basic components of the diagram. When generating
a diagram QGRAF assigns one or more labels (integer numbers, let us stress) to each of the
following objects: vertices, propagators, external fields, and internal fields. Hereafter we will
use terms like vertex index and propagator index to denote the various labels associated with
the diagram components.

A critical issue must be clarified at once: the objects that are labelled are (strictly)
not the ones defined in the model file. In that file, one may find a certain number of fields,
propagators, and vertices that are considered to be different either because the strings that
define them are different (in the case of fields) or because they involve a different set of fields
(in the remaining cases). The labels we have just mentioned are given to embedded objects,
ie attached to some graph component.

Let’s see in more detail how one can define the embedding of fields, propagators, and
vertices. Most of those cases are easy: propagators are attached to internal edges, vertices
to internal nodes, and external fields to external nodes. What about the internal fields? Let
us recall in the first place that in the perturbative expansion the interaction vertices supply
the fields which are to be contracted in pairs, giving rise to propagators. Hence internal
fields should be attached to objects surrounding the internal nodes. We could, for example,
insert two auxiliary nodes into every internal edge and then attach the internal fields to those
auxiliary nodes (as illustrated in fig. 3a). We don’t need auxiliary nodes in the external edges
— the external nodes will do.

The above mentioned method of field embedding is not unique. One could attach
them to edges instead of nodes. External fields would be attached to external edges. One
could insert an auxiliary node into every internal edge (therefore splitting every such edge
into two) and then attach the internal fields to the resulting ‘half-edges’. Hereafter we will
take for granted that the field embedding is properly defined, without relying too much on
the actual method.

5.1 The indices

If a diagram has V internal nodes and P internal edges then QGRAF numbers its
vertices from 1 to V', and its propagators from 1 to P (see the examples given in figs. 2a and

13

2b). Those labellings define what we will call the vertex index and the propagator index,
respectively.

3 1 3
@) . b 2 4
1 1

()

Fig. 2. Some indices for a simple diagram: (a) the vertex indices, (b) the propagator
indices, and (c) the leg indices.

The embedded external fields — or legs — should be labelled too. There are two
different leg indices, one for incoming fields (the in-indez) and another for outgoing fields
(the out-indez). If a diagram has r incoming legs and s outgoing legs then the former receive
the labels 1, 2, ... r and the latter the labels 1, 2, ... s. The label that is chosen for each
leg follows automatically from the order in which the external fields were declared in the
file ggraf.dat. For example, if the external fields are declared by means of the following
statements

in = positron, electron ;
out = higgs, muon_minus, muon_plus ;

then the leg positron receives the in-index 1, the leg electron receives the in-index 2, the
leg higgs receives the out-index 1, the leg muon minus receives the out-index 2, and the leg
muon_plus receives the out-index 3.

QGRAF uses six basic labellings (indices). The field and the ray indices — the last two
types of indices to be presented — are defined over the set of (embedded) fields.

The field index uses the propagator and the leg indices. If a propagator has propagator
index £ then its two fields receive the field indices 2k—1 and 2k (see fig. 3b); if the particle
is different from the anti-particle then the former gets the index 2k—1 and the latter the
index 2k. An external field receives a negative index that is related to the leg index of
the corresponding external node. Specifically, the field index of an incoming (respectively,
outgoing) field that has in-index (respectively, out-index) equal to j is defined as —2j+1
(respectively, —27). This means that the incoming fields receive odd indices (-1, =3, ...)
and the outgoing fields receive even indices (—2, —4, —6, ...). Although this labelling may
seem unnatural at first, it allows one to distinguish external fields from internal ones — as
well as incoming from outgoing fields — without reference to any other quantities.

A related quantity is the field type. It takes only three values, namely 1 (for incoming
fields), 2 (for outgoing fields), and 3 (for internal fields).

The sixth and last type of labelling will be called ray index because we may associate
(in a visual sense) a propagator emerging from a vertex as a ray. For every vertex, the ray

14

index labels the surrounding vertex fields with the numbers 1, 2, ... D (D being the degree
of the interaction), an example of which is given in fig. 3c. In contrast to other labellings,
here labels differ only within each vertex; globally, there usually are repeated labels. The
ray index is not always arbitrary: the index of an embedded field always coincides with the
position (or one of the positions) of the field name in the definition of the interaction given
in the model file. For instance, if an interaction has been defined as

[positron,electron,photon]

then, for vertices of this type, the field positron will always receive the ray index 1, the
field electron will always receive the ray index 2, and the field photon will always receive
the index 3, which means that in this case the labelling is unique (see fig. 3c). When the
interaction contains repeated fields some arbitrariness remains.

g A
o I ON §
Ay 0
() A T

Fig. 3. Revisiting the diagram presented in fig. 2: (a) a way of embedding the
internal fields using auxiliary nodes, (b) the field indices, and (c) the ray indices.
The embedded fields are understood in both (b) and (c).

We now have at our disposal two different notations for the (embedded) fields of a
diagram. The first of these is a single-index notation: ®; denotes the field with field index
i. There is also a two-index notation: ®; ; denotes the field that belongs to vertex i (ie the
vertex whose vertex index is equal to i) and whose ray index equals j. In the case of fig. 3
one has q)—l = ‘1)1’2 = Qﬁ and q)ﬁ = @3,3 = A.

Note that some of the indices presented in this section — like the vertex index —
are not completely determined in terms of a specific and complete rule: users cannot predict
(relying on this manual, only) eg, the vertex indices of the vertices of a given diagram. Should
the undocumented rules used internally by the program change in the future, no problems
should appear provided the user assumes no special property for the indices other than the
generic ones presented above.

15

5.2 The propagator orientation

The program also provides a set of symbolic expressions for representing the momen-
tum flow, a feature that may be rather handy. It is obvious that in order to specify the
momenta throughout the diagram we will have to choose a reference direction for every prop-
agator. What will be called the propagator momentum is the momentum flowing in that
direction.

Let us assume that the field embedding is properly defined, and that the field index of
every embedded field is known. The actual rule for defining the propagator orientation is as
follows: we pick the direction in which, travelling along the propagator, the embedded field
with field index 2 is reached before the one with field index 2¢—1. This coincides with the
particle flow whenever the particle and the anti-particle differ.

ks

K5

P1 d1

kl'pl\ Ko+0s

Fig. 4. The symbolic momenta for the diagram presented in figs. 2-3.

In fig. 4 one may see the symbolic momenta for the diagram presented in figs. 2-3. It
may be verified at once, by taking a look at fig. 3b, that the orientation of the propagators
(indicated with arrows) is in agreement with the above mentioned rule involving the field
indices.

16

6. Output control I

In the first versions of QGRAF — before the release of version 2.0 — the list of diagrams
in the output file would be generated according to a format selected from a short list of
predefined output formats. Having a fixed number of predetermined formats is a self-limiting
approach. Since every program that may be used to process the output of a diagram generator
is most likely bound to have its own notation, the number of formats, and thus the number
of subroutines, may have to be large. One alternative is that users write their own conversion
subroutines, one for every program they think of using. Another problem with the fixed
format approach is that it lessens the potential ability of the computer program to incorporate
into the output the parameters that are part of the model definition (parameters for the fields,
vertices, etc). If one wishes to have (i) a model file where the parameters are chosen by the
user and (ii) an output containing a selection of those parameters, using a notation also
chosen by the user, then the fixed format approach is inadequate.

In later versions there is a lot more flexibility, since the user has at his disposal a
simple programming language to shape the output of the generator. It is not just a matter
of choosing the type of delimiters, spacing and similar marks. Now users can also choose —
the choice is limited, of course — what information they want to have on the output. In
practical terms, it goes like this: to get a new format a user has to provide a file (hereafter
called style file) containing a rather simple program, and that is all there is to it. Users can
have a collection of such files, and use different formats on different occasions. What we
claim is that it is much easier to write such a file than a full conversion routine. It may be
impossible to write a style file that formats the output exactly like one wants; however, it
should be possible to write a style file in such a way that the output file can be processed
directly by one’s favourite computer algebra system.

In simple terms, the output of QGRAF is as follows. At the beginning of the file (here
we are discussing the output that is sent to a file) there is a prologue that may contain, for
example,

e the name and the version of the program that generated the file,

e information required to identify the type of diagrams contained in the file (ie the
statements found in the file qgraf.dat),

e extra information supplied by the user to communicate with to another program that
will read the file (eg special marks to signal the beginning of the diagram listing).

After that the diagrams are listed one by one, following a general pattern. Finally there is a
set of lines/records that usually serve to mark the end of the listing and/or the end of the
file (for example, it is important to know that QGRAF has generated all the diagrams, and did
not abort before completing the task). The characteristics of those three output sections are
specified in the style file.

The syntax of the style file is completely different from any syntax discussed so far.
Apart from comments — see below — that file contains ‘text’ (printable ASCII characters,
that are taken literally) as well as keywords. A keyword is a reserved string that starts with
the character < and ends with the character >, eg <end>. The four keywords that delimit the
specification of the output sections, and which may be found in any of the style files provided
with the program (the files whose name ends in .sty), are the following.

17

<prologue>
<diagram>
<epilogue>
<exit>

Those keywords should always come in that specific order. Each one of those keywords must
be left-aligned on its own line, one containing no further information. Those four keywords
are the only ones that must appear in any style file, and only once (note that a string like
<exit> is not a keyword if it is part of a comment). Apart from syntax requirements all
other keywords are optional — although a style file containing no keyword other than those
required keywords is not terribly useful.

The prologue specification starts on the line following the <prologue> keyword and
ends on the line that precedes the <diagram> keyword. Analogously, the diagram section
specification is bounded by lines containing the keywords <diagram> and <epilogue>, and
the epilogue specification comes between the lines defined by the keywords <epilogue> and
<exit>. What comes either before the keyword <prologue> or after the line containing the
keyword <exit>, if anything, must consist of blank lines or commentary (ie lines starting
with the characters already defined for the other input files). In contrast, in the core part of
the style file — that consists of the prologue, diagram section, and epilogue specifications —
no comments are allowed and all the lines are taken as part of the output specification.

QGRAF reads the style file before starting generating diagrams, and it stores internally
what it read. Just before it writes on the output file (it may do this many times) the
program builds a string, representing a number of lines or records, by a sequence of two
basic operations: appending one or more characters to the right end of the current string or
deleting its rightmost character. The style file contains the instructions to build each such
string.

6.1 The prologue section

For the sake of illustration let us will consider an imaginary style file, one whose
prologue sections is defined by the following lines.

#

#,file generated by <program>

#

<command_loop># ,<command_data><end><back>
#

uu<back>

utsum :=,0

This example contains most of the keywords that may be used in the prologue defini-
tion, and is interpreted as follows. The program starts with an empty output string. Then
line 1 tells it to add a # as well as a newline character, which is always inserted when the
end of a line is reached (to keep the discussion as simple as possible, we will pretend that
there is a newline character whose purpose is to mark the end of a line and implicitly the
beginning of a new line, whenever there is one). Line 2 tells the program to add another 20

18

characters, then to perform the action corresponding to the keyword <program>, and finally
to add another newline character. The keyword <program> adds a string which contains the
program’s name and version number. What that string is may be deduced from the prologue
below, which shows the actual output generated from the above specification (and from a file
qgraf .dat that may also be guessed from the same output).

#

#,file generated by,qgraf-3.0
#

0utput =_’qlist’;

ustyle =, ’sum.sty’;
#,.library =,’";
#.model = ,’qed’;

#,,1in = electron,;

#,0ut = electron, photon,;
#,.1oops=1.3;
#_,,loop_momentum = k;
#,,0ptions = ,floop, onepiy;
#

(W]
utsum,: =|_|O

Note that trailing blanks are ignored, no matter what type of input file is being read (there
is usually some difficulty for a user to see them and, in addition, there is also some difficulty
for FORTRAN to read them). Line 4 from the prologue specification is more interesting: the
keyword <command loop> tells the program to perform a loop (ie a programming loop):
whatever is in between that keyword and the keyword <end> is executed a number of times,
once for every statement found in the file ggraf.dat . The keyword <command_data> tells
the program to insert the input statements in an orderly way, one statement each time the
loop is executed. Note that a newline character is always part of every input statement
(defining the end of the statement) and thus, in the above example, every iteration of the
loop starts writing on a new line.

The keyword <back> deletes the rightmost character from the output string that is
being built (this may generate an error if the string is temporarily empty). In the above
example there are two occurrences of that keyword: the first one serves to delete the newline
character from the last input statement, in order not to have two consecutive newline char-
acters; in the second instance the purpose is to delete the second blank character on line 6,
leaving a single blank (here is a way of generating trailing blanks). The keyword <back>
may also be used to concatenate lines from the style file. This may be useful if one wishes to
split a long line into two or more input lines. One reason for doing this is that the program
assumes that input lines, from whatever input file, contain at most 80 (printable) characters.
For example, the two input lines

This is, a
<back>_ single line !

will be concatenated, since <back> will delete the newline character separating them (as
long as the character < is in column 1). The use of <back> requires the program not to write
a line as soon as it finds a newline character; instead, the output string is not written until
the prologue specification has been fully executed (and similarly for other output sections).
The keyword <back> may appear in any of the output sections; however, there can be no

19

interference among different sections (nor, in the case of the diagram section, interference
between different diagrams).

Let us consider once more the previous prologue specification and the correspond-
ing output. A simple examination of the output reveals that each command from the file
ggraf.dat occupies a single line. However, if one rewrites that file so that at least one
statement occupies more than a single line then the output may include something like this:

#0utput

uu=
uuu’qliSt’ui

That may or may not be what one whishes to obtain. QGRAF offers another possibility: one
may use another kind of loop defined by the keyword <command line loop>, nested inside
the loop defined by <command loop>, eg,

<command_loop><command_line_loop># ,<command_data><end><back>
#
<end>#

The number of times that the inner loop is executed is equal to the number of lines in the
input statement being addressed (which depends on the iteration of the outer loop), and the
keyword <command data> is now iteratively replaced by a single line of that statement. The
latter example provides a way to have all output lines beginning with a hash sign, even if
some input statements extend across two or more lines; in addition, it provides a separating
line between different commands. Here is a fragment of the corresponding output:

#0utput

#oo=

#uoon’qlist’y;

#
#,.style =, sum.sty’;
#

It should be noted that the keyword <command_data> is never replaced by empty lines and/or
comments, only commands or lines that are part of a command, depending on the type of
loop.

To present still another example, here is one specification that will format statements
occupying more than one line into a single line:

<command_loop>#_<command_line_loop><command_data><back><end>
<end>#

There are five exceptional cases for representing characters in the style file. The first
case is that of a blank (space character), if it is a trailing blank (see above). The other
four cases are as follows (on the left hand side there are the ASCII characters one wishes to
represent, and on the right hand side are the respective encodings).

<<
>>
L
1]

114l

20

This means that those four characters must be duplicated in the style file if they are to
appear in the output file. With the help of this convention one may always tell ‘text’ and
keywords apart. The first two of those exceptions are due to the use of the characters < and
> in the delimitation of intrinsic keywords. The square brackets play a similar role in the
case of keywords defined by the user.

6.2 The epilogue section

The epilogue section may contain all the keywords allowed in the prologue section,
plus an additional one discussed below. This means that all the information about the input
commands and the version of the program may be printed in the epilogue section instead, or
even in both sections.

The additional keyword is <diagram index>. As it will be seen in the next subsection,
that keyword is mainly directed at the diagram section, where it instructs the program to
produce a string representing the number of diagrams generated so far, including the current
diagram. By a simple extension, in the epilogue section that keyword will produce a string
representing the total number of diagrams generated by the computer program in that run.

6.3 The diagram section

The keywords may be divided into two main classes. One class contains what one may
call control keywords; they serve to delimit the output sections, to define the programming
loops, etc, but do not generate information by themselves. In this class we may find keywords
like <diagram>, <command _loop>, <end>, and <back>. A second class contains the keywords
that instruct the program to append information to the output string; these will be called
data keywords. Up to now we have already seen three data keywords, namely <program>,
<command_data>, and <diagram index>, but many more exist.

Data keywords may themselves be divided into local and global keywords. Local
keywords are those that must be used inside one of the programming loops accepted in the
style file, while global keywords have no such restriction. Global keywords don’t have to
be constants, for example the keyword <diagram index> will produce different strings at
different stages.

We will now discuss the diagram section, which is obviously the most important. There
are many keywords that may be used in that section, most of which are data keywords. The
global keywords are listed below.

e <diagram_index> — a positive integer specifying the order in which a diagram was
generated (ie 1 for the first diagram, 2 for the second diagram, etc)

e <legs> — the number of external fields of the diagram

e <legs_in> — the number of incoming fields

e <legs_out> — the number of outgoing fields

e <loops> — the number of loops of the diagram

21

e <minus> — similar to <sign> (see below) if the diagram sign is minus, otherwise it
produces an empty string

e <propagators> — the number of internal edges of the diagram

e <sign> — the diagram sign (either a plus or a minus sign) that follows from the
anti-commutation rules

e <symmetry factor> — the diagram symmetry factor (either 1, if there are no sym-
metries, or a fraction like 1/2, 1/6, etc)

e <symmetry number> — the diagram symmetry number (a positive integer equal to the
reciprocal of the symmetry factor)

e <vertices> — the number of internal nodes of the diagram

There are five main types of programming loops in the diagram section, and every
one of them is optional. The keywords

<in_loop>
<out_loop>
<propagator_loop>
<vertex_loop>

announce four of those loops — to be called, respectively, incoming loop, outgoing loop,
propagator loop, and vertex loop — and the keyword <end> closes them. Those loops are
executed as many times as there are (respectively) incoming particles, outgoing particles,
propagators, and vertices in the diagram being listed. During the execution of such a loop
the program prepares itself to inspect the relevant class of objects (ie legs, propagators, or
vertices) and prints information about them if it is requested to do so.

The fifth loop is defined by the keyword <ray loop> and it should always appear
nested inside the vertex loop, like this:

<vertex_loop> ... <ray_loop> ... <end> ... <end>

The ray loop is needed to tell the program to inspect every line incident with the vertex that
is implicitly defined by the vertex loop.

Those five programming loops form the basic tool to access the local information that
defines a diagram. By local information we mean that it refers either to the component of the
diagram being examined, or to some neighbouring component (as opposed to a component
that is on a remote part of the diagram, so to say). For instance, if the object being inspected
is a vertex vy then some information regarding the vertices adjacent to vy is also available
at that moment, as is the information on the propagators (or external lines) incident with
vg. However, at the time that vy is inspected no information about more remote objects
is available, with the obvious exception of the information provided by the global keywords
presented above.

What remains to be explained here is which (local) keywords may be used inside which
loops, as well as what the keywords stand for. The former of those issues is addressed in the
table shown below. A given local keyword may be used in a certain loop type iff the respective
table entry is marked with a full circle. The loop types are denoted by their initials — 7 for
incoming loop, r for ray loop, etc. It is clear that if a keyword may be used in the vertex
loop then it may also be used in the ray loop — although the information it represents will
remain constant while the ray loop is executed.

22

i-loop o-loop p-loop r-loop v-loop
<dual-field> ° ° ° °
<dual-field_index> ° °
<dual-momentum> ° ° ° °
<dual-ray_index>) °
<dual-vertex_degree> ° .
<dual-vertex_index> ° °
<field> ° ° ° °
<field_index> ° ° ° °
<field_sign> ° ° ° .
<field_type> ° ° ° °
<in_index> °
<leg_index> °
<momentum> ° ° ° °
<out_index>
<propagator_index>) °
<ray_index>) °
<vertex_degree> ° ° ° ° °
<vertex_index> ° ° ° ° °

The exact definition of a local keyword depends on the type of loop where it is used.
We will now review the basic loop types and describe all those keywords.

6.3.1 The propagator loop

The propagator loop is executed as follows: when the program finds the keyword
<propagator_loop> it assigns the value 1 to the corresponding loop index, preparing itself to
examine the propagator whose propagator index is equal to 1. Then it continues execution,
printing the information requested about that propagator until it finds the keyword <end>.
At that point it increments the loop index to 2, and the rest you may guess. It only exits the
loop when all the propagators have been visited. Let us recall that if a propagator has been
assigned a propagator index ¢ then the corresponding fields are ®9; 1 and Po;.

To have an idea of the information available during the execution of the propagator
loop one may observe fig. 5, which has been obtained by grouping together figs. 2-4 but
retaining only part of the original diagram, namely propagator 5 and its neighbourhood.

23

3
@) (b) 5 (©) v
L
4
10 1
(d) (e) ® kq+Ko
9 2

Fig. 5. Some local information available in the propagator loop: (a) vertex index,
(b) propagator index, (c) propagator fields, (d) field index, (e) ray index, and (f)
propagator momentum.

A list of the keywords allowed in the propagator loop is given below. Each entry

contains a keyword, its meaning, and an output string generated by that same keyword. The
output string is the one that would be obtained in the description of the propagator shown
in fig. 5 (the string is in parenthesis, after the arrow symbol), in which case we may identify
1 with electron and 1 with positron.

<dual-field> — the name of the field ®5; (— positron)
<dual-field index> — the unsigned integer 2i (— 10)
<dual-momentum> — the symmetric of <momentum> (— -k1-k2)
<dual-ray_index> — the ray index of the field ®o; (— 1)

<dual-vertex_degree> — the degree of the interaction vertex to which the field ®5;
belongs (— 3)

<dual-vertex_index> — the vertex index of the interaction vertex to which ®;
belongs (— 3)

<field> — the name of the field ®5;_; (— electron)

<field_index> — the unsigned integer 2i—1 (— 9)

<field_type> — the field type of the field ®5;_;, which is always equal to 3 (— 3)
<field_sign> — the sign of propagator i (— -)

<momentum> — the momentum of propagator i (— k1+k2)

<propagator_index> — the unsigned integer ¢ (— 5)

<ray_index> — the ray index of the field ®3;_; (— 2)

<vertex_degree> — the degree of the vertex that contains ®5;_; (— 3)

<vertex_index> — the vertex index of the vertex that contains ®5;,_1 (— 4)

24

6.3.2 The leg loops

Let r (respectively, s) be the number of incoming (respectively, outgoing) particles.
Those particles are listed in the file ggraf .dat in a certain order, and we will denote the n'™®
incoming (respectively, outgoing) particle by ®* (respectively, ®%%?).

As seen earlier, there are two types of leg loops, the incoming loop and the outgoing
loop. In the former case the loop is executed r times, once for each incoming field, while in
the latter case the loop is run s times, once for each outgoing field (the legs of the diagram
are, rather obviously, the main objects that are accessed in those loops).

Let us consider first the incoming loop, where the loop counter ¢ runs from 1 to r. Let
v be the vertex that leg ¢ is incident to, and j the ray index (with respect to that vertex) of
the field ®". The field " can then be identified with @ ;.

The same diagram that has been used before (figs. 2-4) is also used here as a basis
for the discussion. Its legs are the ones specified by the following statements,

in = electron ;
out = electron ;

and thus the output presented with every keyword contains a single string (since r=s=1).

e <dual-field> — the conjugate of <field> (— positron)

e <dual-momentum> — the symmetric of <momentum> (— -p1)

e <field> — the name of ‘" (— electron)

e <field index> — the field index of ® (— -1)

o <field type> — the field type of ®" (— 1)

e <field sign> — the sign of ®i" (— -)

e <in _index> — the unsigned integer ¢ (— 1)

e <momentum> — the momentum flowing into the diagram through leg i (— p1)

e <ray_index> — the unsigned integer j, which is the ray index of ®;; (— 2)

e <vertex degree> — the vertex degree of vy (— 3)

e <vertex_index> — the vertex index of vy, which is the unsigned integer & (— 1)

If the loop type is <out_loop> some of the above definitions need to be changed. The

loop counter i goes from 1 to s, but the leg index goes from r+1 to r+s. The keyword
<field> now produces outgoing fields, and the momentum direction is the one leaving the
diagram. Thus @y, ; is now the conjugate of .

e <dual-field> — the conjugate of <field> (— positron)

e <dual-momentum> — the symmetric of <momentum> (— -q1)

e <field> — the name of ®%*' (— electron)

e <field index> — the field index of &9 (— -2)

e <field type> — the field type of ®¢“! (— 2))

e <field sign> — the sign of ®%* (— -)

25

e <leg index> — the unsigned integer r+i (— 2)

e <momentum> — the momentum leaving the diagram through leg i (— q1)

e <out_index> — the unsigned integer i (— 1)

e <ray_index> — the unsigned integer j, which is the ray index of @ ; (— 1)
e <vertex_degree> — the vertex degree of vy (— 3)

e <vertex_index> — the vertex index of vy, which is the unsigned integer k (— 2)

6.3.3 The vertex and the ray loops

The vertex loop tells the program to visit the internal vertices of the diagram, and
the ray loop that it should also visit every line incident with each such vertex. The two
indices that control these loops are the vertex index and the ray index (in the following we
will denote them by i and 7, respectively).

Pm
V Pm V
SS ?/k‘ U ~ I’/k"_\\ Ii -7
CDI,' / q)i,j ch,' \ q)i,j (D“
/ / \
’ ’ \
-7 0SS
- Vl ~

Fig. 6. Basic notation used in describing the vertex and ray loops.

A vertex v; of degree d; comprises the fields ®; ;, for j=1,...d;. Fig. 6 illustrates the
three possible cases for ®; ;: it can be an external field (left), an internal field that is part
of a propagator joining two different vertices (centre), or an internal field that is part of a
propagator built from two fields of the same vertex (right). If, for a given value of j, ®; ; is
an internal field then there is a propagator P,, connecting v; to another vertex v (or else
connecting v; to itself, in which case we just set k£ = 7); that propagator also contains another
field — belonging to vy — which is the conjugate of ®; ; and that will be denoted by ®y ;.
Observe that v, and @ ; are both undefined whenever ®; ; is an external field.

In the ray loop the keyword <momentum> refers to the momentum flowing across the
edge to which ®; ; is attached, in the direction that is shown graphically in fig. 6 by means of
arrows. Loosely, this graphical rule gives the momentum flowing into vertex v; coming from
that edge, except that if ®; ; is an internal field and ¢ = k then this wording must be made
more precise.

Fig. 7 contains part of the Feynamn diagram presented earlier in this section — it
shows vertex 1 and its neighbourhood — and will also be used for illustrating the meaning
of the keywords presented below. This time the output of the program given with each entry
may be divided into two cases. For the keywords that do not require the use of the ray loop
construction the output string contains a single label, the one corresponding to vertex 1. For
the other keywords the output string is composed of three sub-strings (since the degree of
vertex 1 is equal to 3), one for each ray index; that means that the execution of the ray loop
is simulated, but the execution of the vertex loop is not.

26

<dual-field> — the name of the conjugate of ®; ; (— electron positron photon)

<dual-field_index> — the field index of @ ; if that field exists, otherwise zero (—
104)

<dual-momentum> — the symmetric of <momentum> (— k1 -pl -kl+pl)

<dual-ray_index> — the ray index of ®j; (ie the unsigned integer [) if that field
exists, else zero (— 2 0 3)

<dual-vertex_degree> — the degree of the interaction vertex vy if it exists, else zero
(—303)

<dual-vertex_index> — the vertex index of vy (ie the unsigned integer k) if it exists,
otherwise zero (— 3 0 4)

<field> — the name of the field ®; ; (— positron electron photon)
<field_index> — the field index of ®; ; (- 2 -1 3)

<field_type> — the field type of ®; ; (—+3 1 3)

<field_sign> — the signof ®; ; (= - - +)

<momentum> — the momentum flowing into vertex v; coming from the edge to which
®; ; is attached, as explained before (— -k1 p1 ki-p1)

<propagator_index> — the propagator index of P,, (ie the unsigned integer m) if it
exists, otherwise the field index of the external field ®; ; (— 1 -1 2)

<ray_index> — the unsigned integer j (— 1 2 3)
<vertex_degree> — the degree of vertex v; (— 3)

<vertex_index> — the unsigned integer i (— 1)

3 1 1

-1 2

1

3

(@) p (b) 2 () 4
2 Ky
2 L P1
3

@ O

Fig. 7. Basic information available in the vertex loop.

27

Five keywords — <dual-field_index>, <dual-ray_index>, <dual-vertex_ index>,
<dual-vertex_degree>, and <propagator_index> — are defined in a peculiar way when
the ray index j defines an external edge. This is done for two main reasons: it either
ensures compatibility with earlier pre-defined formats or it provides more information than
a straightforward definition would. The core issue is the same: either one does not accept
any of those keywords as valid, or else one must define them ad hoc for the cases where a
natural definition fails to exist (ie for vertices incident with external lines). An additional
keyword, <dual-field>, is defined in a way that is not consistent with the meaning of the
prefix dual- as used in other keywords; in addition, if it were consistent in that regard then
it would suffer from the same problem that the other five keywords do. This problem will
hopefully reach an acceptable status in a future release, as other features become available.

6.4 The diagram sign

The diagram sign computed by QGRAF is equal to (—1)%4, with T4 being the number
of transpositions of anti-commuting fields that are needed to bring those fields from their
natural vertex ordering (defined in the model file) to the ordering defined by the propagator
pairing plus an ad hoc reordering of the unpaired fields. The unpaired fields are ordered
according to their leg indices, the outgoing fields to the left of the incoming fields, the former
in increasing order and the latter in decreasing order:

(@yout pyout .. prowt) (@n ... O Pin).

As an example, let’s take the diagram displayed in figs. 2—4, and assume the usual
@E@bAM ordering for the interaction vertex. Using the field indices given before, the vertex
product can be written as

(Uy Uy A3) (U_o U; A5) (Uyg Uy Ag) (Ug Ty Ay).
After discarding the commuting fields a simple reordering will lead to
F (T2) (T) (0 Uy) (W7 Tg) ((Wg Ty).
Hence QGRAF will say that the sign of that diagram is +.

Users don’t really have to use the diagram sign computed by QGRAF. As it should be
clear by now, it is very simple to omit any reference to the diagram sign in the output file,
and then users are free to implement their own definition.

6.5 A first survey of output styles

The set of available keywords is certainly not a minimal set. Also, from a strict point
of view, one does not need three different types of loops. The advantage of this abundance
is that one can choose the features that suit one best (for example, some features which are
instantly available could require some extra programming if a minimal set were used).

The main issue concerning the choice of output style is the processing of the expressions
built by QGRAF. The output styles defined by the files sum.sty, array.sty, and form.sty
may serve to illustrate three different approaches. The first one consists in combining all the
symbolic expressions into a single expression, that is, to add them up. Further processing may
be problematic if the number of diagrams is large. In the second approach an array/vector

28

is defined, each component storing the symbolic expression for a single diagram; then the
processing program reads the whole array and manipulates all the expressions in a single
run. In some cases this may still be problematic, or just inefficient. In the third approach,
which has been used together with FORM [3], the expressions are still kept in a single file but
each expression can be read and processed separately.

Ny

y

L’\/ii

Fig. 8. A diagram from QED, and the corresponding field indices (the embedded
fields are understood).

Let us now look at the output produced by the style files array.sty and form.sty
that are part of release 3.0. Although the corresponding output styles are outdated, a brief
analysis of those styles can still be profitable if it provides a basis for building other output
styles. The examples presented below refer to the diagram shown in fig. 8. The first of those
uses the file array.sty:

a(l):= (+1)x*

pol(e(-1,p1))=*

pol(p(-3,p2))*

pol(A(-2,q1))*

pol(A(-4,92))*

prop(A(1,-k1))*

prop(e(5,-k1-p2))*

prop(e(3,-ki+pl))*

prop(e(7,-kl+pl-ql))*
vrtx(p(4,k1-pl),e(-1,p1),A(1,-k1))*
vrtx(p(-3,p2),e(5,-k1-p2),A(2,k1))*
vrtx(p(8,k1-pl+ql),e(3,-ki+pl) ,A(-2,-ql))*
vrtx(p(6,k1+p2) ,e(7,-ki+pl-ql) ,A(-4,-q2));

The numbers that appear in the above expression as arguments of the fields are the field
indices. All the allowed types of programming loops are used. The propagators have a single
argument since the second argument would not contain new information (the second field
would be the conjugate of the first, the second index would be equal to the successor of the
first, and the momentum would be the symmetric of the first).

Using the file form. sty the same diagram is described as follows.

x——#[di:
*
1
*vx (p(2),e(-1),A(1))
*xvx (p(-3),e(3),A(1))

29

*vx (p(4),e(2),A(-2))
*vx (p(3),e(4),A(-4))
*
x——#] di:

Here only the propagator index is used; the two fields with a common argument belong
to the same propagator, and fields whose argument does not match are the external fields.
This notation seems to be insufficient for models containing Majorana fields (the ones for
which the particle and the anti-particle coincide and the field components anti-commute).

30

7. Output control II

In the previous section we discussed the output features that are available by default.
However, as seen in the section “Model Configuration”, it is possible to define parameters
for the fields, propagators and vertices of a model. The subject of the present section is then
how to make use of such parameters, ie how to program the style file so that they appear in
the output file.

7.1 Field, propagator, and vertex functions
Let us go back to QED, and consider the following model file:

% constants

% propagators
[electron, positron, - ; pfunct= ’S’, m= ’me’]

[photon, photon, +; pfunct = ’P’, m= 'm0’]
p p p

% electromagnetic vertex
[positron,electron,photon; gpow = ’1°]

We may interpret the function pfunct as representing the “propagator function” and m as
the “propagator mass”. Coupling that model file with the following code (which is meant to
be part of the diagram section of the style file)

<propagator_loop>,[pfunct] (<momentum>, [m])*
<end>

leads, in the case of the diagram represented in fig. 4, to the following output:

uS (k1 ,me)*

P (k1-p1,mO) *
LUP(-k2,m0) *
LS (k2+q1l,me) *
uS (k1+k2,me) *

In this elementary example we can see how to obtain an output where each propagator type
has its own name, and its own mass. As seen earlier, implicitly defined functions (ie those
that are defined within QGRAF) are denoted by strings enclosed in angle brackets (in fact,
the symbols < and >). Now we may see that the functions defined by the user should have
their names enclosed in square brackets when referred to in the style file. This prevents any
interference between the two sets of functions, and so the user can define his functions by
any valid identifier.

31

It is probably worth stressing that the type of functions considered in this subsection
have as their domain a set of objects from the model file, not a set of embedded objects.
In other words, when the computer program evaluates say, the result corresponding to the
function represented by the string [pfunct] it only looks at the field names that appear in
the propagator, not at the propagator index; hence [pfunct] gives the same result for all
embedded propagators sharing the same fields (ie, field names).

As seen in the previous section, keywords like <field> and <vertex_index> can be
used in more than one kind of loop provided one makes appropriate definitions in each case.
In a parallel way one may accept the inclusion of user defined functions in more than one
type of loop. This holds even for propagator functions, which are always seen as a special
case of field functions. In some cases the user defined functions may be prefixed with the
string dual-, just like some intrinsic functions.

Propagator functions are treated mostly like field functions in what concerns the
output of the program; the only difference is that the prefix dual- will not be allowed. The
following table shows which kind of functions are allowed in which type of loop (the presence
of a full circle in a matrix entry denotes permission, and its absence interdiction).

i/o-loop p-loop r-loop v-loop
[ff] ® [})
[dual-ff] ° ° °
[pf] ° ° °
[dual-pf]
[v£] ° ° ° °
[dual-vf] °

The strings £f and vf denote generic field and vertex functions, respectively; they map fields
¢ and vertices v from the model into strings ££f(¢) and vf(v). The string pf denotes a
generic propagator function. The definitions of the functions listed in the above table depend
on the type of loop they appear in, but it is possible to present unified definitions using a
few intrinsic keywords that are loop dependent.

e [ff] — the string £f(¢) where ¢ is the field that <field> refers to

e [dual-ff] — the string £f(¢) where ¢ is the field that <dual-field> refers to

e [pf] — the string pf(¢) where ¢ is either of the fields denoted by <field> and
<dual-field>

e [vf] — the string vf(r) where v is the interaction vertex whose vertex index is given
by <vertex_index>

e [dual-vf] — the string vf(r) where v is the interaction vertex whose vertex index is
given by <dual-vertex_index>

Note that calling [dual-vf] in the ray loop would lead to problems. This issue is linked to
the fact that some intrinsic functions have abnormal definitions in this type of loop, and will
hopefully be resolved in a later release.

32

7.2 The constants

The discussion about the first part of the model file, which was omitted in section 3,
is the subject of the present subsection. That part of the model file is the place where to
define the constants of the model. That could be a name for the model, or some other string
that should appear in the output file, even as a comment. Admittedly, the choice is rather
limited; the usefulness of that part of the model file will hopefully increase in the future when
non-constants are allowed to come into play.

The following statement shows a typical definition of a constant (note that any such
statement should define a unique constant).

[Lmodel, = ,’massless QCD_in D=4-eps dimensions’]

If the constant model is defined on a set of model files then it is possible to use the keyword
[model] in (say) the prologue of a style file and specify in a more precise manner the model
which is being considered instead of just guessing from the model filename (it is being assumed
that there is a style file shared by various models).

Constants may be used in any section of the style file, and may be invoked just like the
field/propagator/vertex functions, ie enclosing the name of the constant in square brackets.

33

8. The screen output

Even when there is no output file there is a minimal output sent to the default output
logical unit, usually some window on the screen. That output consists mainly of the following
information: (a) the version of the program, (b) the statements found in the file qgraf .dat,
(c) the model partitions, (d) the possible vertex degree partitions and, for every such partition,
the matching number of diagrams, and (e) the total number of diagrams found. Here is an
example:

output = ’qlist’ ;
style = ’qgraf.sty’ ;
library = 7’

model = ’scalar’ ;

in = H, H ;

out = H, H ;
loops = 2 ;
loop_momentum = k ;
options = onshell ;

model partitions: P71 V72
B"1 371 4-1

4°3 --- 12 diagrams
472 —-—— 300 diagrams
41 --- 457 diagrams
- --— 153 diagrams

total = 922 diagrams

The first model partition shows the number of propagators (the exponent of P) and
the number of vertices (the exponent of V) found in the model file. The second partition
is a refinement of the first, and displays the following numbers, if positive: the number of
bosonic propagators (the exponent of B), the number of fermionic propagators (the exponent
of F), and the numbers of vertices with degree 3, 4, etc (the number of vertices with degree
k is the exponent of k in that expression). Terms corresponding to null values are omitted.
The example we have just presented corresponds to a run where the model has a single

34

propagator (that of a real bosonic field) and two vertices (one cubic and one quartic self-
interaction terms).

Let v, (k = 3,4,...) be the number of vertices of degree k in some Feynman diagram
with a given number of legs and number of loops. If the last two numbers are kept fixed and
the v, are regarded as variables, then it should be clear that there is a finite number of possible
solutions for the vector v = (v3, vy, ...). For example, there is no 1-loop propagator diagram
having 8 cubic vertices. Each vertex degree partition is a possible solution for the vector v
(possible in the sense that it satisfies the basic partition-like equation) and is displayed using
a common notation for partitions. If we go back to our previous example we will see that the
program found 12 diagrams with three quartic vertices (and none cubic), 300 diagrams with
two cubic vertices and two quartic ones, etc.

35

9. Symmetric theories

QGRAF is most suitable for broken-symmetry models. However, in the case of symmetric
theories some extra work is usually wanted. For the purpose of illustration let us take QCD
(6x3 quarks, 8 gluons and 2x8 ghost fields). It is clearly possible to obtain a list of all the
graphs for a particular process provided that the model file lists all the interactions of that
model, that is, all the vertices for all possible colour indices (there are roughly 200 vertices for
QCD). This will result in a very large number of diagrams, which is not what one usually wants.
One usually prefers a shorter list where each generic diagram represents all the diagrams of
the larger list that differ only in the values of some colour indices. However, this approach
requires the computation of algebraic factors (the so-called colour traces) to take into account
the contributions of the diagrams represented by each generic diagram.

The shorter list may be obtained in a simple way, by not including colour indices (ie
typing in the model as if there were eg 6 quarks, 1 gluon and one pair of ghosts). But then
one should rely on other means to get the colour traces. If the diagrams are to be evaluated
symbolically with the help of a computer then one may use a computer algebra program to
have the colour trace computed. This is not a trivial task, specially if one wants to have a
somewhat arbitrary gauge group [4].

36

10. Installation

QGRAF is almost entirely written in standard FORTRAN-77. Depending on your com-
piler, you may have to execute the following steps (before compiling the code) in order to
eliminate the nonstandard features.

e adjust the OPEN statements (4 occurrences) to your system/compiler requirements;
by default, those statements incorporate two nonstandard qualifiers (readonly and
carriagecontrol) that work only with a restricted set of compilers. If you get an
error message from your compiler, remove the incompatible qualifiers.

e change characters to uppercase if necessary.

Summarizing: adjust the code to your needs; compile, link, and then execute (the
model file, the style file, and the file qgraf.dat should be provided). Please note that the
program must be called from the directory where the file ggraf.dat is located. It should
be a good idea trying to reproduce some of the numbers listed in ref. [1]. Please report any
discrepancies.

As the program does not allocate memory dynamically, the size of the memory needed
to store all the information supplied to and/or used by the program is controlled by means
of parameters, and thus set when the program is compiled. When the default values of those
parameters are insufficient for QGRAF to handle successfully a certain problem the program
will abort. However, if one adjusts (ie increases by a sufficient ammount) the values of the
relevant parameters and recompiles the source code, the program will be able to run. A
serious effort has been made with version 3.0 to reduce the number of parameters that the
user might have to change. If a model contains many fields, vertices, functions, etc, then the
following parameters may have to be increased.

e sibuff — the dimension of the integer array where most integer values are stored
e scbuff — the size of the character buffer where most strings are stored

Those parameters are set in the following statement
parameter (sibuff=524288, scbuff=131072),

which appears in several routines.
The bounds on the number of loops and legs are as follows.

loops < maxrho
1 < legs < maxleg
legs + loops < max(maxrho,maxleg)
3 < legs + 2xloops

The default values for maxrho and maxleg are 5 and 9, respectively. Those parameters can
be changed, but in practice that won’t be needed often, if ever. Users requiring higher values
should take extra precautions as the present cross checks on the program do not cover that
domain. In addition, the implemented algorithm is not efficient for large values of nloop. A
faster sub-algorithm is under study (low priority). In any case, the number of graphs tends
to increase very rapidly with the number of loops — roughly in a factorial like way — and
the average time to generate a single graph also increases somewhat.

37

11. Update

Version 3.0 represents the second stage towards the goal of providing a truly pow-
erful built-in tool to shape the output of the program. This time, support for user-defined
parameters has been included. Other significant improvements include: (a) a more flexible
syntax in file ggraf.dat and in the model file, and (b) a redesign of the program in order to
(i) reduce the number of parameters that may have to be changed by the user and (ii) ease
the future implementation of better memory allocation techniques. That redesign required a
substancial rewriting of the computer program.

There are several changes with respect to version 2.0 (see below for a list). Not every
change may be classified as strictly necessary but, given that some changes were needed, a
few others which could be helpful in some way (particulary in clarifying the notation, or
making it more uniform) were also implemented. The entries that are marked with an open
circle are the ones that introduce incompatibilities — in the sense that input files valid for
version 2.0 require (or may require) some modification before being accepted by version 3.0.
Let us start with the changes related with the input file qgraf.dat:

statements may be split across multiple lines

option notadp has been replaced by notadpole

some new options, mostly duals of the previously existing ones (eg onepr, tadpole)
two new operators (sbridge and rbridge) allowed in the optional statements

® © O o

The changes regarding the model file are:

field/propagator/vertex parameters may be defined

identifiers may be longer

statements may be split across multiple lines

vertices no longer have to be listed in order of ascending degree

new keywords external and notadpole replace old notation (p and t) in propagator
declarations

O e e o o

Finally, the changes for the style file:

the parameters from the model file may be used in the output specification

new keyword <field type>

new loops <in_loop> and <out_loop> replace <leg_loop>

keyword <sub_loop> has been replaced by <ray_loop>

keyword <propagator_index> substitutes <edge_index>

keyword prefix dual_ has been replaced by dual-

<command_loop>, <command line _loop> and <command data> supersede keywords
<prologue_loop> and <data>

the keywords <leg_field> and <leg momentum>, as well as their duals, are obsolete
e all the keywords accepted in the prologue section may be used in the epilogue section

O O O O O e o

o

38

12. Final comments

QGRAF is copyrighted software that may be freely used for academic purposes. As
it should be clear, no guarantee can be given that the software is free of programming er-
rors. For that reason, users are urged to find methods of cross-checking their results, even
if in a partial way (verifying gauge invariance comes to mind). Please report all bugs, ma-
jor and/or minor, should you find any. Simply send the author an e-mail to the address
paulo.nogueira@ist.utl.pt .

That is not to say that each version of QGRAF doesn’t have to go through many tests
before being released. However, as the complexity of a computer program keeps growing it
becomes impossible, at least in practical terms, to analyse all the possible cases that may be
submitted to that program. With respect to the consistency checks that were performed, a
special mention is due to FORM [3] and its convenient pattern matching capabilities.

Please do not distribute the code; instead, share the anonymous ftp site for the pro-
gram, which is the following (as of May 2004).

ftp://cfif .ist.utl.pt:/pub/qgraf/
In this way the latest original version will be accessed.

The release consists of the FORTRAN source code (file qgraf.f), the user’s guide (file
qgraf.ps), and a few auxiliary files. As explained before, the files whose name ends in .sty
are style files.

QGRAF has benefited from suggestions from several people, specially J. Vermaseren,
T. van Ritbergen, and K. Chetyrkin. I also thank G. J. van Oldenborgh for sharing his
experience on FORTRAN compilers.

References

[1] P. Nogueira, J. Comput. Phys. 105 (1993) 279-289.

[2] D.E. Knuth, The TgXBook (Addison Wesley, 1994).

[3] J. Vermaseren, Symbolic Manipulation with FORM (Computer Algebra Nether-
lands, Amsterdam, 1991).

[4] T. van Ritbergen, A.N. Schellekens, J.A.M. Vermaseren, Int. J. Mod. Phys. A 14
(1999) 41-96.

