
1

QGRAF 3.4.2 — an update1,2

P. Nogueira

CeFEMA, Instituto Superior Técnico,
Universidade de Lisboa (ULisboa), Lisbon, Portugal.

Abstract

This document is a sort of addendum to the guide for version 3.0, and describes what
has changed since that version was released. The manual for version 3.0 is still the main
documentation source, to be complemented by this document.

To find out what is new in version 3.4.2 see the Changelog (last page).

1 April 2019 (due to a lapse, this updated file was absent from the corresponding distribution for the
first few days)

2 an integrated, revised guide is in preparation

2

Contents

1. The vsum and psum statements 3

2. The elink statement 4

3. The plink statement 5

4. Option bipart 6

5. Option cycli 6

6. Option onevi 8

7. Option onshellx 8

8. Duplicate vertices 9

9. The config statement 10

10. The index offset statement 12

11. Additional changes 13

Changelog for release 3 15

3

1. The ‘vsum’ and ‘psum’ statements

The ability to define functions (ie parameters associated to fields, propagators, and
vertices) in the model-file leads implicitly to new diagram selection methods. It is now possible
to impose some numerical constraints that depend on those functions that are integer. The
existence of a mechanism to (eg) restrict the powers of coupling constants seems particularly
relevant, specially in models with two or more independent coupling constants. In fact,
partial radiative corrections based on subsets of diagrams defined by such conditions have
been routinely considered in the particle physics literature.

In practice the new filters consist of optional statements that may appear in the file
qgraf.dat (see also the guide for version 3.0, subsection 4.3). Let g power be a v-function
mapping every vertex to an integer equal to the power of a certain coupling constant g in
the Feynman rule for that vertex. To restrict the sum of such values for the vertices of a
diagram, and thus the power of g in the diagram amplitude, one may write eg

true = vsum[g power, 4, 4] ;

The operator vsum has three arguments: the first is a v-function and the other two are
numerical and similar to the corresponding arguments of operators iprop, brigde, . . . , with
the exception that they can be negative. The function values have to be integer numbers,
which means that definitions like

g power = ’1/2’

g power = ’ 2’

are not accepted. In principle it is possible to convert a constraint involving rationals into
another one depending on integers only; however, such integers should not be too large (there
should be no problem if their absolute value does not exceed 106, say).

Obviously, this filter may be used for purposes other than selecting the powers of
coupling constants. For example, let one be a v-function that maps every vertex to ’1’; if
one is used as the first argument of a vsum statement then the number of vertices in the
diagrams will be restricted.

Here is another simple example: let V1 be a subset of the interaction vertices, and
binary a v-function that maps vertices in V1 to ’1’ and vertices not in V1 to ’0’; the
statement

false = vsum[binary, 0, 0];

selects diagrams containing at least one vertex in V1.

There is an analogous statement for propagators. For example,

true = psum[pweight, -1, 1] ;

restricts the sum of the values of the p-function pweight taken over the diagram propagators.

4

2. The ‘elink’ statement

The elink statement provides a way to restrict the configuration of external lines — ie
diagrams can be selected or rejected depending on whether some external fields are attached
(or not) to the same vertex or set of vertices. Various constraints of this type, to be dubbed
(external) linking conditions, may be simulated by carefully extending the model — defining
new (‘external’) fields and new vertices — but that approach can be rather complicated.

Let us take a look at some examples, assuming the generic process

ψ1 ψ2 → ϕ1 ϕ2.

The field-indices of those external fields are, from left to right, equal to −1, −3, −2, −4. The
statement

true = elink[-1, -3, incl, 1, 1] ;

selects those diagrams in which ψ1 and ψ2 connect to the same vertex, inclusively — meaning
that the other external fields may connect to any vertex, as far as this statement is concerned.
For example, diagrams like D1 and D3 (Fig. 1) are validated, and D2 rejected. The next
statement

true = elink[-1, -3, excl, 1, 2] ;

selects those diagrams in which ψ1 and ψ2 connect (in total) to either one or two vertices,
this time exclusively — ie ψ1 and ψ2 may or may not connect to the same vertex, but in
either case the other external fields must be attached to other vertices. This condition rejects
D2 and D3, for instance.

D1

-2

-4-1

-3

D2

-2

-4-1

-3

D3

-2

-4-1

-3

ψ1

ψ2

φ2

φ1

Fig. 1. Illustrating the elink statement.

A generic elink statement includes three types of arguments. Each argument of the
first type should be the field-index of an external field, and therefore a negative integer;
no repetitions are allowed. Then comes a non-numerical argument, either excl or incl, to
specify whether the linking condition is exclusive or inclusive. The third set of arguments
consists of two positive integers (a and b, say) which specify the range for the number of
vertices involved in the linking condition. If k denotes the number of arguments of the first
type then the inequalities

1 ≤ a ≤ b ≤ k

should hold, otherwise an error will occur. Here are some more examples: the statement

false = elink[-1, excl, 1, 1];

requires ψ1 to link-up with some other external field(s), whereas

false = elink[-1, -2, incl, 1, 1];

5

requires ψ1 not to link-up with ϕ1 (a condition which diagram D3 fails to satisfy). Some
elink statements are trivial, eg (still in the case of the above mentioned process)

true = elink[-1, incl, 1, 1];

true = elink[-1, -3, incl, 1, 2];

true = elink[-1, -2, -3, -4, excl, 1, 4];

Their negation rejects every diagram, of course.

3. The ‘plink’ statement

This section addresses the case where the selection criterion consists in either the
absence or existence of a bridge-type propagator with a specific nonzero momentum — more
precisely, a momentum P that may be expressed as a sum of the momenta (with plus or minus
signs) of certain external fields. The ability to either disallow or require the existence of those
propagators may help select eg diagrams whose amplitude has some type of resonance, or tree
diagrams contributing to the s-, t- and u-channels. In the case of non-tree diagrams it also
provides a way to have some external fields ‘on-shell’ and others ‘off-shell’ (like a selective
onshell option, see below).

If one picks a connected diagram that has such a propagator then cutting the corre-
sponding edge into two pieces will split the set of external fields into two non-empty subsets
— X1 and X2, say — each containing the external fields belonging to one of the two sub-
diagrams obtained. If pi and qj denote the incoming and outgoing momenta, respectively,
then P can be written as

P =
∑
i

ai pi −
∑
j

bj qj ,

with ai, bj ∈ {0, 1} (here, the global sign will be ignored); in any case, the relative signs of the
momenta in the above relation are fixed. As the external momenta satisfy the momentum
conservation relation

∑
pi =

∑
qj , it should be clear that P can be expressed as a linear

combination of the external momenta in two different ways.

D1

-2

-4-1

-3

D2

-2

-4-1

-3

D3

-2

-6

-1

-3

p1

p2

q2

q1

p1

p2

q2

q1

-4

b

Fig. 2. Illustrating the plink statement.

The arguments of the plink statement should be the field-indices of the external fields
in either X1 or X2; the number of arguments cannot be equal to zero, nor equal to the number
of legs, as P would then be null. Let us take a look at some examples: the statement

6

true = plink[-1, -3];

selects those diagrams that have at least one propagator with momentum p1+p2, like diagram
D1 (Fig. 2); diagram D2, which has a propagator with momentum p1−q2 (or p2−q1), would
be selected by either of the statements

true = plink[-1, -4];

true = plink[-3, -2];

The plink statement also provides a way to choose which external fields should be
‘on-shell’; for instance,

false = plink[-2];

rejects any diagram with a bridge separating external field −2 from all other external fields,
such as diagram D3 (which has one such bridge, labelled with the letter b).

4. Option ‘bipart’

The option bipart selects those diagrams whose topology is a bipartite graph — ie
a graph G whose node-set can be partitioned into two subsets A and B in such a way that
every edge joins a node u ∈ A to a node v ∈ B. That is the same as requiring that G has
no circuit of odd length; in particular, G has no self-loops (to eliminate circuits of length 2
as well, one may add option simple). Clearly, every tree is bipartite. The dual option is
nonbipart.

5. Option ‘cycli’

Given the usual types of Feynman rules in momentum space, the evaluation of some
diagrams involves a ‘factorizable’ integration, ie decomposable into a product of two or more
independent integrations (for 2-loop and higher order diagrams, obviously). Even if the
complete integrand does not have such a property it might be possible to decompose it into
a sum of factorizable expressions, if the diagram topology is right.

Given a graph G, a circuit (or simple cycle, which physicists may call a loop) is a
non-empty set of edges that, together with their endnodes, define a connected subgraph of
G in which every node has degree 2. It follows from the definition that a circuit cannot be
decomposed into two or more circuits. Circuits of length 1 and 2 are allowed: the former
case corresponds to self-loops, and the latter to pairs of parallel edges (self-loops excluded)
as in diagrams D2 and D3, Fig. 3. Let Eb and Ec denote the set of bridges and the set of
non-bridges, respectively (a bridge is an edge that is not part of any circuit).

Definition: a cycle-block (or cycle-component) of a graph G is a non-empty subset
S ⊆ Ec such that

◦ if any circuit C contains at least one edge e ∈ S then every edge of C is in S;

◦ for any two edges e1, e2 ∈ S, whether distinct or not, there is a circuit containing e1
and e2.

Observations: the first condition ensures that S contains the circuit(s) involved in the second
condition; any self-loop is a cycle-block.

7

The diagrams validated by option cycli4 are those that have a non-factorizable cycle
space, ie they have at most one ‘cycle-block’; the dual option is cyclr. Since cycli ignores
bridge-type propagators, it is the following combination,

cycli, onepi

which selects sets of diagrams even more ‘primitive’ than those selected by option onepi only.

There is a simple interpretation of cycle-blocks in terms of sub-diagrams. Let D be an
l-loop, non-tree diagram, and Pc the set of its non-bridge propagators; assume that momen-
tum conservation has been taken into account and that k1, k2 . . . kl denote the independent
integration momenta; additionally, ignore the external momenta (eg set them to zero). Then
each cycle-block is a minimal5, non-empty subset S of Pc such that the two sets of mo-
menta flowing through the propagators in S and S̄ = Pc \S, respectively, are independent of
each other (ie can be parametrized independently); the case where S = Pc and S̄ is empty is
implicitly allowed, as there may exist a single cycle-component. Fig. 3. shows a few examples.

D2D1

D4D3

1

2

3

4

5

7

8

6

1

2

Fig. 3. Illustrating option cycli.

Diagram D1 will be rejected by cycli: there are two self-loops and therefore two
cycle-blocks. The momenta on propagators 1 and 2 (as marked), which can be defined as k1
and k2 (respectively), are independent and there is no propagator whose momentum has to
be expressed as a linear combination in which the coefficients of k1 and k2 are both nonzero.

Diagram D2 also has two cycle-components, which are defined by the subsets of prop-
agators S1 = {1, 2, 3} and S2 = {4, 5, 6, 7, 8}. Here it is possible to express eg k3 in terms
of {k1, k2}, and {k5, k6, k8} in terms of {k4, k7} (excluding the contributions of the external
momentum, obviously). Since it is possible to do so within each of the above subsets, D2 will
also be rejected.

That type of partitioning is not possible for diagram D3, which will be validated; D4

will be validated too, just like any tree or 1-loop diagram.

NB: in the case of 1-particle irreducible diagrams there is some overlap between options
cycli and (see next section) onevi, but they do not coincide; however, if both bridges and
self-loops are excluded, then they become identical.

4 to be interpreted as ‘cycle-irreducible’
5 ie non-decomposable into two or more sets of the same kind

8

6. Option ‘onevi’

Option onevi selects those diagrams whose topology has no articulation point, or cut
vertex (in the standard terminology of graph theory). This means those diagrams that remain
connected upon the removal of any single vertex (interaction vertex, that is, as external nodes
are completely ignored); by definition, the empty graph is connected. Consequently, diagrams
discarded by option onevi must have at least three vertices. The dual option is onevr —
onevi means ‘1-vertex irreducible’, and onevr ‘1-vertex reducible’, of course.

T2T1 T3

Fig. 4. Illustrating option onevi.

In Fig. 4, D1 and D2 are 1-vertex reducible: deleting any of the vertices that do not
connect to an external line will generate two disjoint components. Diagram D3 is irreducible
as it has too few vertices to be reducible. There is a class of diagrams that are both 1-particle
reducible and 1-vertex irreducible, for which D3 may be seen as a kind of prototype: they
have exactly two vertices (u and v, say), joined by a single propagator; u and v may have
self-loops; the external fields link-up with u and/or v, obviously.

The previous figures also provide useful examples: the 1-vertex reducible diagrams
are D3 in Fig. 2, and D2 in Fig. 3.

7. Option ‘onshellx’

The option onshell discards diagrams that have a propagator whose splitting gener-
ates two separate diagrams, provided one of those is a 2-point diagram. In that case there will
be a bridge-type propagator whose momentum equals the momentum of one of the external
lines (as in diagrams D2 and D6, Fig. 5, where the bridge is labelled with the letter b and
the corresponding external line with the letter e).

Occasionally, a more extensive elimination may be useful. The option onshellx also
rejects diagrams for which the above mentioned bridge is absent, as if it had contracted to a
single point and its two end-vertices had fused (compare eg D1 and D2). Diagrams rejected
by onshellx, but not by onshell, will have at least one vertex of degree δ≥ 4. Like most of
the other options, onshellx has a ‘topological’ character: only the diagram topology matters,
not the actual fields.

Diagram D1 will be rejected by option onshellx, but not by onshell; it will be
rejected by onshellx whether or not there exists (in the model given as input) a similar
diagram D2 with the same fields except for the bridge b. Diagram D2 will be discarded by
either option, obviously.

9

D3 D4

D5 D6

D1

b

D2

b
e

e

Fig. 5. Illustrating option onshellx.

Diagram D3 will not be rejected by onshellx, unlike D5: although D3 may be ob-
tained by contracting the bridge in D4, that bridge does not isolate a single leg (and no
suitable diagram exists), whereas D5 can be obtained from D6, which has a suitable form. If
options onshellx and nosnail are used simultaneously then all six diagrams will be rejected.

The combination
offshellx, onshell

yields the diagrams rejected by onshellx and validated by onshell, and this allows a ba-
sic cross-check to be done (in the case where those diagrams are supposed to evaluate to
zero). Regarding cross-checks that have been performed so far, the numbers obtained for the
combination

onshellx, nosnail

agree with several numbers from L. Dixon and S. Badger (private communication6) for 1-loop
and 2-loop diagrams, respectively. Additionally, a second algorithm has been developed for
onshellx, and an agreement with the original algorithm was found.

8. Duplicate vertices

A model has ‘duplicate vertices’ if its description contains at least two vertex decla-
rations with the exact same fields and multiplicities (ie for every field Φk, the multiplicity of
Φk is the same in either declaration). Each vertex may in fact have several duplicates, and
although the corresponding declarations may be identical, that needs not be the case: the
values of the v-functions may differ, as well as the field ordering in each vertex.

Duplicate vertices have been tolerated for some time but typically qgraf generated
more diagrams than necessary — with the appropriate ‘symmetry factors’, though. Things
have improved with version 3.3 : further symmetries are taken into account in this case, and
the number of diagrams may now be smaller (and some factors larger).

6 the introduction of onshellx is based on a suggestion made by Lance Dixon

10

9. The ‘config’ statement

The config statement allows the specification of a number of options that are not
related to diagrams. It may appear at most once, necessarily as the first statement in file
qgraf.dat .

9.1 The screen-modes

Given the current number of possible warning messages, it is convenient to have some
control over the information sent to the ‘standard output’ (by default, the screen). There are
three possible options, namely

noinfo info verbose

which may appear (not concurrently) in the config statement, eg

config = info ;

The ‘screen-modes’ defined by those options are as follows:

◦ noinfo: nothing will be displayed unless an error occurs;

◦ info: the program’s name and version number, the input commands from the control-
file, and the number of generated diagrams (per vertex partition, and the total num-
ber) are displayed in that order; if the diagram generation finishes but there were
suppressed warning messages (which would have been shown in verbose mode) a
warning sign is added to the line showing the total number of diagrams, eg

total = 12343 diagrams (w!)

◦ verbose: in addition to the information displayed in info mode, the program displays
every ‘alert’ it can, as well as a summary of the model consisting of various numbers
of propagators and vertices; this screen-mode may help with the debugging of input
files, as it should be clear.

If an error condition is detected the corresponding error message is shown and then the
program stops, obviously, irrespective of the screen-mode. If the config statement is either
absent or contains none of those three options, qgraf will behave as described next:

◦ if an output-file is to be created, the screen-mode is set to info;

◦ otherwise, the screen-mode is set to verbose.

9.2 Improving the write performance

If the operating system is one of those for which ‘newline’ is ASCII’s line feed (LF)
control character, like Linux/Gnu based systems, there is an experimental feature that should
speed up the write operation. That feature is enabled by option lf, eg

config = lf ;

This should lead to a small to moderate (overall) performance increase, provided the output-
file is large enough.

11

Compatible systems are listed in Wikipedia’s Newline7 page, section Representation.
One may always run the program with and without that option (a single test case may be
sufficient), and check if the output-files are identical.

9.3 Other configuration options

Option nolist disables creating an output-file even if a filename is declared, eg

config = nolist ;

output = ’dlist’ ;

9.4 A missing option

When the number of diagrams is ‘big’ (larger than 105, say), the output-file will also
be quite large, obviously, and it might be desirable to split it into several files of a more
manageable size if (eg) the diagram processing software can handle them more efficiently
than it would handle a single large file. Although qgraf does not provide a way to perform
this type of operation, that may not be a real problem as there exist tools which, with little
effort, can be used for the job. The remaining of this sub-section describes a possible method
(for Linux/Gnu operating systems).

The two lines below (in typewriter font) show an excerpt of a conceptual style-file:
they represent the last line of diagram section (an extra, artificial line introduced for the
present purpose) and the line declaring the epilogue section.

#␣<diagram index>xyx

<epilogue>

We will assume that the string xyx does not normally appear in the output-file, ie that it
is generated only when that extra line is added; if that is not the case then some suitable
string should be used instead. Now we will rely on the operating system and execute the
shell-command

csplit --prefix=’xx’ --digits=3 dlist ’/0000xyx/’ ’{*}’

This splits output-file dlist into smaller files (the ‘pieces’), each containing the description
of 104 diagrams (except for the last file, obviously, which could have a smaller number), since
the pattern 0000xyx appears every time the diagram index is a multiple of 10000. In this
example the pieces will be named xx000, xx001, xx002, and so on; the prefix xx and the
length of the suffix (ie the number of digits) may be specified as arguments of the csplit

command. The prefix should be chosen with care, as csplit overwrites existing files; also, to
keep the number of pieces within reasonable bounds, the number of diagrams per file should
typically be larger than 1% of the total number of diagrams (hence having 104 diagrams per
file might be acceptable if the total number of diagrams does not exceed one million, say).

One may have a number of diagrams per file that is not a power of ten, eg 5 times
a power of ten, but that is a bit more complex. It is also possible to separate the diagrams
from the prologue and epilogue sections by including the string to be matched in these other
sections of the style-file, more precisely in the last line of the prologue and in the first line of

7 https://en.wikipedia.org/w/index.php?title=Newline&oldid=863813417

12

the epilogue. In any case, if necessary, the additional lines can be eliminated with the help
of a simple bash script, eg

rm -f xx0tmp

for xf in `ls xx*` ; do

grep -v xyx $xf > xx0tmp

mv -f xx0tmp $xf

done;

It is safer to do the whole procedure in a directory containing only the output-file and its
pieces, of course.

10. The ‘index offset’ statement

When combining the output-files of two or more runs into a single file, it may be
useful not to have the first diagram of every output-file being assigned the diagram index 1.
An optional statement which may appear in file qgraf.dat, immediately below the options
statement, eg

index offset = 1071 ;

instructs the program to add a non-negative constant to the default diagram index. This offset
is disabled in the epilogue section, where the keyword <diagram index> is still replaced by
the number of diagrams listed in the output-file.

The following example shows a possible application of the index offset statement.
Let us suppose that the diagram selection criteria involve not a conjunction like

true = A ;

true = B ;

(where A and B represent valid expressions), but some other logical connective of two or
more conditions, eg

(true = A) ∨ (true = B).

Although this type of statement is not accepted, there is a way out: the inclusive disjunction
can be split into three non-overlapping cases, namely (case 1)

true = A ;

false = B ;

then (case 2)

false = A ;

true = B ;

and finally (case 3)

true = A ;

true = B ;

which may be run separately; similarly, the exclusive disjunction can be divided into two
pairwise-disjoint cases, the equivalence A⇔B into two cases also, and so on.

13

11. Additional changes

There are other differences between versions 3.4 and 3.0, the most relevant of which
are presented below.

Recent versions accept input files containing a so called UTF-8 byte order mark, which
is included by some applications when saving text. This provides the ability to create input
files with a broader range of software (the actual text characters must still be the printable
ASCII characters, though).

From version 3.2 onwards, and only for 1-point diagrams, the behaviour of options
nosnail and snail is not the same as before: instead of rejecting all such diagrams, nosnail
is in that case equivalent to onshellx.

The implicit definition of option floop has not remained completely fixed since its
original implementation. In version 3.2 and later versions the use of floop requires that

◦ there is at least one anti-commuting field;

◦ every vertex has either 0 or 2 anti-commuting fields.

The diagrams rejected by floop are those that have at least one loop (ie circuit) of odd
length for which every propagator is that of an anti-commuting field. The idea behind floop

is Furry’s theorem for QED, but it is up to the user to decide on its use. The dual option
notfloop is also available.

There is a different presentation of the model partitions, which now includes some
additional types of propagators (this refers to the screen output). Here is an example

propagators: (8) 2N+ 3C+ 1N- 2C-

which is to be interpreted according to the following rules:

◦ The signs ‘+’ and ‘-’ denote the propagator sign (ie, whether the propagators are
defined in terms of commuting or anti-commuting fields).

◦ The letter ‘N’ refers to ‘neutral’ propagators, ie those for which the particle is equal
to the anti-particle.

◦ The letter ‘C’ refers to ‘charged’ propagators, ie those for which the particle and the
anti-particle differ.

For instance, the propagators of Dirac fermions (and the propagators of some ghost fields
as well) contribute to the coefficient of C-, while the propagators of Majorana fermions
contribute to the coefficient of N-. Therefore, in the above example the model-file defines
eight propagators, five ‘bosonic’ and three ‘fermionic’; two of those bosonic propagators are
neutral (string 2N+) and the other three are charged (string 3C+); in the case of the fermionic
propagators, one is neutral and two are charged.

Recent versions differentiate between ‘true-propagators’ and ‘non-propagators’: if a
declaration contains the keyword external then it counts as a ‘non-propagator’, otherwise
as a ‘true-propagator’. An extra line may then be displayed on the screen, eg

non-propagators: (1) 1N+

propagators: (7) 1N+ 3C+ 1N- 2C-

The corresponding numbers are mutually exclusive (in this example the model-file contains
eight propagator declarations too).

14

In some cases the program is able to detect that there are no diagrams, either for
certain vertex partitions or even for all partitions, without trying to generate any such di-
agram (this is work in progress). Those situations can be created by some combinations of
options and/or statements. In such cases (those detected, that is) the screen output will have
two additional asterisks near the corresponding number of diagrams (which will be zero, of
course). In the case of a vertex partition it will look like this

3^2 4^1 0 **

and if the constraints are independent of the vertex partitions (for instance, if the diagrams
are required to be trees and also have tadpoles) then the program will simply display

total = 0 diagrams **

without listing any partial result. In either case, the presence of those asterisks should mean
that the usual diagram generation was not attempted.

One other possibility of that kind consists in detecting the violation (by the process
given as input) of conserved particle numbers or, equivalently, of conserved quantum numbers
— where ‘conserved’ means conserved in the model described in the model-file, obviously. For
now, however, there is a separate program (qgraf-r) which may be used for that purpose.

It is not advisable to change the program parameters, since there is a real risk of
ending up with a defective program (specially for version 3.1.5 and later versions). The only
changes that should be ‘safe’ consist in increasing one or more of the parameters

scbuff sibuff sxbuff

should the program report that the actual values are too small (they control the size of some
arrays). That should be by no means a frequent occurrence: there would have to be eg an
unusually large input file or a model with a large number of vertices (or at least some vertices
of high degree). One may then try to double the value of each reported parameter, more
than once if necessary, until there is no error (alas, there is also an upper limit for those
parameters). Note that each of those parameters is declared in multiple subroutines, and
that every such declaration should be exactly the same in every part of the Fortran program.

15

Changelog for release 3

3.1 (May 2005)

Introduces the vsum and psum statements. Screen output is more detailed.

3.1.1 (April 2008)

Fixes an error with psum, as well as a minor bug related to the screen output.

3.1.2 (September 2010)

Fixes an error with vsum.

3.1.3 (November 2011)

Removes non-standard options of the OPEN statements from the source code (following a sug-
gestion made by the GoSam collaboration) to make it automatically compatible with gfortran.

3.1.4 (October 2012)

Introduces ability to read files containing ASCII text prepended by an UTF-8 byte order
mark.

3.1.5 (February 2018)

Includes a minimal, partial ‘fix’ to one of the performance bottlenecks, which nevertheless
provides, in some cases, the ability to generate diagrams at roughly one additional order of
perturbation theory.

3.2 (June 2018)

Introduces option onshellx (and its dual). Introduces option notfloop, the dual of floop.
Modifies behaviour of option nosnail (and its dual) for 1-point diagrams. Fixes an error
with the style-file processing. Fixes a problem with the diagram index (there is an error if the
number of diagrams is very large, ie > 8 · 108), and allows that index to exceed 231. Minor
optimizations.

3.3 (July 2018)

Introduces the elink and plink statements. Improves treatment of duplicate vertices. In-
troduces the diagram index offset. Introduces option bipart and its dual. Fixes an error
with the model-file processing (involving the model-constants).

3.4 (January 2019)

Introduces options cycli, onevi, and their duals. Introduces the config statement. Fixes a
problem with option nosigma, and one other problem with the screen output (involving the
propagator types).

16

3.4.1 (March 2019)

Fixes an error with with the plink statement, and another error involving the simultaneous
use of the two options nosnail and notadpole. Adds adjective connected to screen output,
to stress the fact that disconnected diagrams are not generated.

3.4.2 (April 2019)

Fixes a bug which generates problematic error messages about model-functions.

