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2 1. IntroQGRAF is a 
omputer program for generating Feynman diagrams | more pre
isely,symboli
 des
riptions of Feynman diagrams | in quantum �eld theories. Its output, whi
hthe user 
an 
ontrol in a number of ways, 
onsists of a list of diagrams that mat
h the input
onstraints; the sign | the one whi
h follows from anti-
ommutation relations | and thesymmetry fa
tor of every diagram are also provided. QGRAF does not perform any other �eldtheoreti
 
al
ulation, however.This program was 
reated to automate the often tedious task of writing down Feynmandiagrams and their symboli
 amplitudes, espe
ially when the number of Feynman diagrams islarge. QGRAF is mainly dire
ted at writing the amplitudes in terms of produ
ts of the matrixelements that follow from the Feynman rules, with no further pro
essing. By presenting thesymboli
 amplitudes in a raw form it provides a 
ommon starting point for di�erent types of
al
ulations.In the following se
tions we will try to des
ribe in some detail how to use this program.A general des
ription of the algorithm may be found in ref. [1℄. Please note that the 
urrentversion of the program does not generate va
uum diagrams, ie diagrams with no external�elds.



32. Strings, identi�ers, and the su
hLet us start with a dis
ussion on some very basi
 points regarding the input to be readby QGRAF. The alphabet to be used expli
itly in the re
ords read by the program is a subsetof ASCII, namely the subset whi
h 
ontains the printable 
hara
ters with 
odes ranging from32 (blank) to 126 (tilde). This in
ludes all the letters from A to Z (both lower
ase andupper
ase), the digits 0 through 9, parenthesis, bra
es, and several more symbols. Note inparti
ular that ASCII 
hara
ter 9 (tab) is ex
luded. Some additional 
hara
ters 
ould beadded to that alphabet | like the 
hara
ters used to mark the end of the re
ord/line, orthe end of the �le | with the understanding that they are 
ontrol 
hara
ters and their useo

urs at a di�erent level (the exa
t list even depends on the operating system or �le systemused). Hereafter we will often do our best to pretend they are not there.Some types of strings are more relevant than others, so let us single out the ones thatwill be referred to later on. An identi�er is a string made of letters, digits, and unders
ores,with the 
ondition that the �rst 
hara
ter is a letter. Upper and lower 
ase are not equivalent.The following strings provide three examples of identi�ers.spin F 0 
siDepending on what the output of QGRAF is used for, a more restri
ted 
lass of identi�ers mayhave to be used; for example, if the output is to be pro
essed by a 
omputer algebra systemthe identi�ers used by QGRAF will have to be re
ognized as su
h by that program.An integer is a sequen
e of digits, possibly pre
eded by a plus or minus sign: forinstan
e, -0, +17, and 1234567 are integers. A rational is either an integer or a sequential
on
atenation of (a) an integer, (b) ASCII 
hara
ter 47 (slash), and (
) a nonzero unsignedinteger; some examples are +0/5 and 3/7.Note that the 
haraters mentioned in any of the above de�nitions (for identi�ers, inte-gers, and rationals) are the only ones allowed. In parti
ular, blank spa
es are not allowed inthose strings, although they are permitted in a di�erent type of strings that will be des
ribedin the next paragraphs. When dealing with strings 
ontaining blanks it is often 
onvenient touse the symbol  | the so 
alled visible spa
e [2℄. This symbol allows one to 
larify whenevera blank is indeed part of a string, or where a re
ord does begin, or end (if there are leadingand/or trailing blanks).Let us now spe
ify a way to build strings that are a

epted as indivisible by QGRAF, notparsed in the usual way, even if those strings 
ontain several 
omponents su
h as identi�ers,integers, pun
tuation marks, et
. For example, suppose one wants the program to a

ept thestring Quantum Ele
trodynami
s in D=4-epsilon dimensionsas a single obje
t. A possible solution to that problem 
onsists in en
oding the desired stringinto another one that 
annot be 
onfused with the other types of strings (identi�ers, integers,rationals) and then supply the en
oded string to QGRAF | whi
h will simply de
ode it.The right quote (ASCII 
hara
ter 39, also known as apostrophe) plays a spe
ial rolein the en
oding algorithm that was implemented. To en
ode a string is straightforward: �rstdupli
ate every right quote (ie repla
e ea
h su
h 
hara
ter by two 
onse
utive ones) and thenadd a right quote to ea
h end of the resulting string. The en
oded form of the above stringis simply `Quantum Ele
trodynami
s in D=4-epsilon dimensions'



4 Here are other examples: the empty string is en
oded by the length 2 string ''; a string
onsisting of a right quote is en
oded into the length 4 string ''''. This type of en
odingwill be referred to by the designation normal-en
oding. This en
oding is exa
tly the one usedin FORTRAN sour
e programs, as it is well known (note, however, that the syntax for string
on
atenation is di�erent | see below).Re
ords read by the program are limited to 80 printable 
hara
ters, at least if theinternal parameters are not 
hanged. This 
ondition pla
es an e�e
tive bound on eg thesize of identi�ers, sin
e an identi�er 
annot be broken into 
omponents. However, stringsthat are presented to the program in en
oded form 
an es
ape that limit: before beingen
oded, any su
h string may be de
omposed into several 
omponents, and then the en
odedstrings 
orresponding to those 
omponents 
an be written sequentially, either on the sameline (separated by at least one blank!) or on 
onse
utive lines (more on this later). Forexample, the string 'f(x)='  '1+sin(x)'is not the normal-en
oding of any (single) string, but it will be interpreted by the programas a representation of the string f(x)=1+sin(x)sin
e the 
on
atenation is impli
it. We will say that a string t is an en
oding of anotherstring s i� t will be de
oded as s, irrespe
tively of whether the en
oding is normal or not.Hen
e a string may have numerous en
odings.



53. Model 
on�guration3.1 The minimal des
riptionEvery model should be des
ribed in a �le (hereafter 
alled the model �le) to be suppliedby the user. The model �le is formally divided into three se
tions, but the �rst of those isoptional and will be des
ribed later. The �rst required se
tion 
ontains the de
larations forthe propagators and the last se
tion 
ontains the vertex de
larations. For example, in the
ase of quantum ele
trodynami
s the model �le may look like this:%  
onstants%  propagators  [ele
tron, positron, -℄  [photon, photon, +℄%  ele
tromagneti
 vertex  [positron,ele
tron,photon℄Lines that start with any of the 
hara
ters # (hash mark), % (per
ent sign), or *(asterisk) are ignored by the program and thus they 
an be used to write 
omments. Theblanks that are present in the model �le (and are not part of 
omment lines) serve mainly twopurposes: to represent real blanks in en
oded strings, or simply to isolate strings from oneanother. Frequently, they are not even needed for the latter purpose sin
e other pun
tuationmarks already ful�l that role.Fields (or parti
les) are denoted by identi�ers. In the above example there are three�elds: ele
tron, positron, and photon. There are two propagators and one vertex.The basi
 syntax for the de
laration of a propagator is[part 1, part 2, s℄,where part 1 and part 2 are �elds and s is the sign of the propagator ('plus' for bosoni
 �elds,ie �elds satisfying 
ommutation relations, and 'minus' for fermioni
 �elds). The �eld part 1 isthe 
onjugate of part 2, and vi
e-versa; if part 1 and part 2 are the same �eld then we havea self-
onjugate �eld. As it happens with ghost �elds, sometimes part 1 and part 2 are notreally parti
le and anti-parti
le; nevertheless part 1 and part 2 will be 
alled (respe
tively)the parti
le and the anti-parti
le, in an absolute sense. What we 
all propagator representsa non-trivial 
ontra
tion | ie va
uum expe
tation value of the time ordered produ
t | of apair of free �elds. Graphi
ally, it is simply a type of (possibly oriented) edge.The basi
 syntax for the de
laration of an intera
tion vertex of degree n is[part 1, part 2,...,part n℄.Intera
tions are usually 
ubi
 or quarti
, but in rare situations (eg exoti
 gauges, e�e
tivemodels) there will be intera
tions of higher degree. QGRAF will a

ommodate for this (degrees



6 in the range 3{6 are a

epted by default, higher values require 
hanging the value of a pa-rameter in the sour
e 
ode). Some thought should be given to the ordering of the �elds inthe vertex de
larations, making sure that ea
h su
h de
laration is 
onsistent with the respe
-tive Feynman rule. For instan
e, when anti-
ommuting �elds are present | as in the aboveexample | one should not write [ele
tron,positron,photon℄ if one has a Feynman rulethat applies to the ordering �  A�, or else wrong signs may appear. Similar 
onsiderationsapply to the propagator: one should use [ele
tron,positron,-℄ to de�ne the propagator<  � >.Di�erent de
larations should be written on di�erent lines. De
larations 
an extenda
ross several 
onse
utive lines provided the line breaks are 
onsistent (this means that every`
omponent' | identi�er, number, et
 | must be 
ontained wholly in a single line, andneither blank lines nor 
omment lines should be present in the middle of a de
laration).3.2 More parametersThe syntax de
laration presented above is | let us stress it | the basi
, minimalsyntax. It lets us set the 
ombinatorial des
ription of the model, that is, what kind of linesthere are and how they are allowed to meet at the nodes of the graphs (as well as whetherthe �elds follow 
ommuting or anti-
ommuting relations). That syntax must be extended toprovide the ability to de�ne parameters like mass, spin, 
harge, or even more 
omplex obje
tsrepresenting Feynman rules, form fa
tors, et
.QGRAF allows users to de�ne fun
tions for �elds, propagators, and verti
es. Ea
hsu
h fun
tion | whi
h maps either �elds, propagators, or verti
es to 
hara
ter strings | isrepresented by its own (freely 
hosen) identi�er. If a fun
tion f has a �nite domain then it
an be spe
i�ed by means of a �nite number of assignements of the form x ! f(x) | notunlike a tabular de�nition | without using a generi
 `formula'. That is the approa
h usedin the program: to de�ne a vertex fun
tion in the model �le we simply have to state, inthe de
laration of every vertex, the image of the vertex under that fun
tion (see below forthe exa
t notation). The same goes for propagator fun
tions (just repla
e the word `vertex'by `propagator'). De�ning a �eld fun
tion is just slightly less trivial: every propagatorde
laration should 
ontain either a single image or a pair of images (a

ording to number ofdistin
t �elds that 
ompose the propagator). Those images should be de
lared on the righthand side of the propagator and/or vertex de
larations, whi
h is separated from the left handside by a semi
olon.A basis for the dis
ussion of the extended syntax 
an be obtained from a suitablemodi�
ation of the model �le presented in the pre
eding subse
tion. Here is the new version,this time without visible spa
es:% 
onstants% propagators[ele
tron, positron, - ; C= ('-1', '+1'), m= 'me'℄[photon, photon, +; C = ('0' ), m= 'm0' ℄% ele
tromagneti
 vertex[positron,ele
tron,photon; gpow = '1' ℄



7In this example the fun
tion C maps ele
tron to -1, positron to +1, and photon to 0(one may think of C as the ele
tri
 
harge); the fun
tion gpow maps the single vertex to 1(this 
ould be the power of the 
oupling 
onstant appearing in the vertex Feynman rule);�nally, m (this 
ould stand for the mass) maps the fermioni
 propagator to me and the bosoni
propagator to m0.The notation for de
laring the images of verti
es and/or propagators isfun
tion id = S,where fun
tion id is the fun
tion identi�er and S is the image (an en
oded string). In the
ase of �eld fun
tions the notation is eitherfun
tion id = ( S 1 , S 2 ),if the parti
le is di�erent from the anti-parti
le, orfun
tion id = ( S )in the opposite 
ase (S, S 1, and S 2 denote en
oded strings). It is 
lear that a propagatorfun
tion is a spe
ial 
ase of a �eld fun
tion, and 
an always be rewritten as su
h.A simpli�
ation that is allowed in the de�nition of fun
tions is the following: animage may be written unen
oded whenever it is a valid identi�er, integer, or rational (lengthallowing). Hen
e the previously presented model �le 
an be simpli�ed as follows.% 
onstants% propagators[ele
tron, positron, - ; C= (-1, +1), m= me℄[photon, photon, +; C = (0 ), m= m0 ℄% ele
tromagneti
 vertex[positron,ele
tron,photon; gpow = 1 ℄Here are also some examples of de
larations where that kind of simpli�
ation is not permitted:(1) x = '', (2) s = ' 1', (3) sum= '2+1', (4) key= 'a b', (5) v = '(0)', (6) rp = ')'.3.3 Two optional keywordsThere are two mutually ex
lusive keywords that 
an be used in the propagator de
la-rations and whi
h serve to further 
hara
terize the �elds from the model �le. The keywordnotadpole is used to prevent the program from generating diagrams 
ontaining one-pointfun
tions of the �eld(s) de
lared in the statement where that keyword is used. If one modi�esthe previous de
laration for the photon �eld and writes[photon, photon, +, notadpole; C = (0 ), m= m0 ℄then diagrams with tadpoles of the �eld photon will be systemati
ally suppressed.The keyword external is used to spe
ify that the �eld(s) to whi
h it applies 
annot bepresent as propagators of the diagrams generated by the program. In the following example[Phi, Phi, +, external℄the �eld Phi is then a kind of external sour
e (the program does not 
ount external lines aspropagators).



8 4. The input statements4.1 The required statementsThe basi
 instru
tions for QGRAF should be listed in the �le qgraf.dat . The followingexample will help us dis
ussing them in detail.output = 'qlist' ;style = 'qgraf.sty' ;model = 'qed.' ;in = ele
tron, positron ;out = photon, photon ;loops = 2 ;loop momentum = k ;options = onshell, floop;Most of the stru
ture of that �le must be preserved; for example, those statementsshould not be removed, not even reordered. The statements no longer need to �t on a singleline, and the restri
tions for line breaking are exa
tly those that have been stated for themodel �le. Comment lines may also be present and are analogous to those of the model �le.There are some optional statements (not listed above) that may be used to pla
e furtherrestri
tions on the list of generated diagrams, but those will be dis
ussed later.Let us now analyze the eight required statements. The �rst statement de
lares theoutput �le, in this 
ase the �le qlist . If this �le already exists then the program will abort;for safety reasons, no overwriting is attempted. Spe
ifying an empty �lename (ie writingoutput = '' ;) will tell the program not to generate the diagram list; it will still run andprint a summary on the default output, usually the s
reen, but it will not 
reate a list ofdiagrams. Unless one knows in advan
e that the number of diagrams is not too large, oneshould 
onsider performing a �rst run without listing the diagrams in a �le just to make surethe output will be of any use (and also to prevent �lling up the 
omputer disk).The �lename should be written in en
oded form, as dis
ussed in se
tion 2. It should benoted, however, that any leading and/or trailing blanks in the �lename will just be ignored.These rules apply also to �lenames in other statements.The se
ond statement de
lares the style �le, that is, the �le that tells QGRAF how topresent the diagram listing. The output style 
an be de�ned rather arbitrarily (see se
tions`Output 
ontrol I' and `Output 
ontrol II' for details).The third statement de
lares the model �le. Statements four and �ve de�ne thein
oming and outgoing �elds, respe
tively. It is also possible to spe
ify the external momenta.The statementsin = ele
tron[p1℄, positron[p2℄ ;out = photon[q1℄, photon[q2℄ ;de�ne both the external �elds and their momenta: for example, p1 is the momentum of theele
tron, 
owing inwards, and q1 is the momentum of the �rst photon, 
owing outwards. Ifat least one momentum is de
lared, then all momenta must be de
lared. If no momentum



9is de
lared the program uses the default momenta, whi
h are de�ned as follows: p1, p2, p3,et
, for the in
oming �elds and q1, q2, q3, and so on, for the outgoing �elds (respe
tingthe order in whi
h the �elds were de
lared). Hen
e in the spe
i�
 
ase of the above twostatements, the momenta de
larations 
ould as well be omitted. The momenta should beidenti�ers; 
omposite momenta like -p1, p3-p1, or +k 
annot be used. Also, 
on
i
t with theintegration momenta should be avoided.The sixth statement spe
i�es the number of loops of the diagrams. Statement sevende�nes the 
ommon pre�x of the integration momenta asso
iated to loops, whi
h must be anidenti�er too. For instan
e, if this momentum pre�x is equal to k and the number of loops isequal to 2 then the two (symboli
) integration momenta will be k1 and k2.The last required statement allows one to spe
ify a number of (mostly) topologi
alproperties that the Feynman diagrams should have. If no keywords are stated (options = ;)then all the 
onne
ted diagrams satisfying the 
onstraints imposed by the earlier statementswill be generated. To make QGRAF dis
ard 
ertain types of diagrams (like 1-parti
le redu
iblediagrams, diagrams with tadpoles, et
) one simply has to list the appropriate keywords,separated by 
ommas.4.2 The optional keywordsBefore des
ribing the available options it is 
onvenient to present some terminology.A 1-parti
le redu
ible diagram is one that 
an be dis
onne
ted by the removal of an internaledge; su
h an edge will be 
alled a bridge. If some bridge 
arries zero momentum, no matterwhat the external momenta are | it is understood that the 
onservation of momentum is usedat every vertex | it will be 
alled a singular bridge; a bridge that is not singular is regular.A tadpole is part of a diagram 
onne
ted to the rest of the diagram by a singular bridge. Thediagram from �g. 1a 
ontains a regular and a singular bridge (r and s, respe
tively); deletings will 
learly display the tadpole.
k1

k1

p1 p1

q1 q1

q2 q2

s
r

(a) (b)

Fig. 1. Two snails but only one tadpole.A snail is either a tadpole or a 
ollapsed tadpole (ie one that 
an be obtained froma tadpole by eliminating the singular bridge de�ning the tadpole and merging the endnodesof that bridge into a single node). The diagrams in �g. 1 
ontain one snail ea
h, the snailon the right being a 
ollapsed version of the one on the left. These de�nitions apply even ifnodes of higher degree are present.Here is the list of the available options, together with a short explanation.� onepi | 1-parti
le irredu
ible diagrams only



10 � onshell | no self-energy insertions on the external lines� nosigma | no self-energy insertions (nowhere)� nosnail | no snails� notadpole | no tadpole insertions, ie no 1-point insertions� simple | at most one propagator 
onne
ting any two di�erent verti
es, and no prop-agator starting and ending at the same vertexThe 
onverse of these options are also available. Ea
h of the following optionsoneproffshellsigmasnailtadpolenotsimplereje
ts the diagrams validated by its 
ounterpart, and vi
e-versa. It should be noted that allthe above 
onstraints are 'topologi
al', that is, there is no referen
e to �elds; it is not thewhole diagram that matters, only the underlying graph. In addition, these options may beused in any 
ombination, sin
e they all eliminate some 
lasses of diagrams.Two other options are also allowed in spe
ial situations. When dealing with QED onemay want to make use of Furry's theorem, and in that 
ase the following option is available.� floop | no graphs in whi
h fermion loops have an odd number of intera
tionsAs dis
ussed in ref. [1℄, QGRAF generates diagrams by �rst generating a `topology' (the un-derlying graph, 
onsisting of nodes and edges), then �nding all 
onsistent ways of �tting theexternal �elds and the intera
tion verti
es, then pro
eeding to generate the next topology,et
. Consider now a di�erent algorithmi
 
ow: imagine that after �nding a valid diagram theprogram would stop trying to �nd other diagrams with the same topology and would insteadgenerate another topology. That would allow one to obtain an exa
t list of all the topologiesthat are present in the 
orresponding (
omplete) list of Feynman diagrams. The followingoption provides exa
tly that.� topol | dis
ards diagrams whose (unlabelled) topology is equal to that of an earliergenerated diagram (to be used with a single neutral �eld, only)4.3 The optional statementsSin
e the set of options just des
ribed is 
learly insuÆ
ient other ways of sele
tingdiagrams were implemented into the program. The generi
 form of those 
onstraints is<logi
al> = <operator> [ <arg 1>,<arg 2>, ... <arg k> ℄ ;



11where <logi
al> is either true or false and <operator> is one of the following keywords.bridge
hordiproprbridgesbridgeThe number of arguments k must be equal to or greater than 2, and the last two arguments| ie those with indi
es k�1 and k | should be non-negative integers, 
omposed of at mostfour digits; furthermore, of those two arguments, the �rst should not ex
eed the se
ond. Theremaining arguments (if there are any) should be �elds. Whenever present, those statementsshould 
ome after the options statement.To restri
t the number of propagators of the �eld phi one may write egtrue = iprop[ phi ,3, 7℄ ;This statement sele
ts diagrams for whi
h the number of propagators of the �eld phi is atleast 3 and at most 7. If one repla
es true by false then the diagrams sele
ted are the onesin whi
h the number of propagators of the �eld phi is either less than 3 or greater than 7.The role of the two numeri
al arguments is similar for all operators, only the quantity being
onstrained varies.On other o

asions one might be interested in propagators with 
ertain topologi
alproperties. The operators 
hord (and bridge) enumerate propagators whi
h belong (re-spe
tively, don't belong) to a loop. Bridges 
an be split into regular and singular ones, asexplained, hen
e the operators rbridge and sbridge. For example, the statementfalse = 
hord [ photon,0, 0℄ ;requires that there is at least one propagator of the �eld photon in a loop.All these operators may have several �elds as arguments. For instan
e, the statementtrue = rbridge [ photon, ele
tron,2,2℄ ;
onstrains the sum of the numbers of regular bridges with propagators of the �elds photonand ele
tron, respe
tively. In general, ea
h �eld argument always 
ontributes to the sumeven if it is a dupli
ate; also, it does not matter whether a propagator is represented by theparti
le or the anti-parti
le. One may also have no �eld argument at all as infalse = bridge [ 1, 3℄ ;in whi
h 
ase the total number of bridges is restri
ted.It may be observed that this type of statements may obviate the need for the optionalkeywords notadpole and external in the model �le. In fa
t, statements like the followingprodu
e (respe
tively) the same e�e
t.true = sbridge[ photon, 0, 0 ℄;true = iprop[ Phi, 0, 0 ℄ ;The model �le is intended as something fairly permanent, not something one should 
hangetemporarily for a single 
al
ulation and then 
hange ba
k again, espe
ially if the same e�e
t
an be a

omplished in the �le qgraf.dat. However, both possibilities exist.



12 5. Intrinsi
 representation of diagramsThis se
tion presents a number of te
hni
alities that will be needed for understandingand 
ontrolling the output of the program. To begin with, let us present some terminology.Apart from Feynman diagrams | viewed as pure 
ombinatorial obje
ts | sometimes we willalso 
onsider the underlying graphs, as if the Feynman diagrams had been stripped of their�elds. When referring to those graphs we will use the terms node and edge. The externalnodes are the nodes of degree one asso
iated with the external �elds, while the remainingnodes are 
alled internal nodes. Similarly, an external edge is an edge that is in
ident to anexternal node, and any other edge is 
alled internal. When referring to a Feynman diagramwe will use the terms vertex and propagator ; these terms are the analogue of internal nodeand internal edge, respe
tively, but they are meant to in
lude the information about theatta
hed �elds.The representations of a Feynman diagram that 
an be obtained in the output �le arebased on a set of indi
es that label the basi
 
omponents of the diagram. When generatinga diagram QGRAF assigns one or more labels (integer numbers, let us stress) to ea
h of thefollowing obje
ts: verti
es, propagators, external �elds, and internal �elds. Hereafter we willuse terms like vertex index and propagator index to denote the various labels asso
iated withthe diagram 
omponents.A 
riti
al issue must be 
lari�ed at on
e: the obje
ts that are labelled are (stri
tly)not the ones de�ned in the model �le. In that �le, one may �nd a 
ertain number of �elds,propagators, and verti
es that are 
onsidered to be di�erent either be
ause the strings thatde�ne them are di�erent (in the 
ase of �elds) or be
ause they involve a di�erent set of �elds(in the remaining 
ases). The labels we have just mentioned are given to embedded obje
ts,ie atta
hed to some graph 
omponent.Let's see in more detail how one 
an de�ne the embedding of �elds, propagators, andverti
es. Most of those 
ases are easy: propagators are atta
hed to internal edges, verti
esto internal nodes, and external �elds to external nodes. What about the internal �elds? Letus re
all in the �rst pla
e that in the perturbative expansion the intera
tion verti
es supplythe �elds whi
h are to be 
ontra
ted in pairs, giving rise to propagators. Hen
e internal�elds should be atta
hed to obje
ts surrounding the internal nodes. We 
ould, for example,insert two auxiliary nodes into every internal edge and then atta
h the internal �elds to thoseauxiliary nodes (as illustrated in �g. 3a). We don't need auxiliary nodes in the external edges| the external nodes will do.The above mentioned method of �eld embedding is not unique. One 
ould atta
hthem to edges instead of nodes. External �elds would be atta
hed to external edges. One
ould insert an auxiliary node into every internal edge (therefore splitting every su
h edgeinto two) and then atta
h the internal �elds to the resulting `half-edges'. Hereafter we willtake for granted that the �eld embedding is properly de�ned, without relying too mu
h onthe a
tual method.5.1 The indi
esIf a diagram has V internal nodes and P internal edges then QGRAF numbers itsverti
es from 1 to V , and its propagators from 1 to P (see the examples given in �gs. 2a and



132b). Those labellings de�ne what we will 
all the vertex index and the propagator index,respe
tively.
1 2

3

4

1

2

3

4

5

(a) (b)

1 1

(c)Fig. 2. Some indi
es for a simple diagram: (a) the vertex indi
es, (b) the propagatorindi
es, and (
) the leg indi
es.The embedded external �elds | or legs | should be labelled too. There are twodi�erent leg indi
es, one for in
oming �elds (the in-index) and another for outgoing �elds(the out-index). If a diagram has r in
oming legs and s outgoing legs then the former re
eivethe labels 1, 2, : : : r and the latter the labels 1, 2, : : : s. The label that is 
hosen for ea
hleg follows automati
ally from the order in whi
h the external �elds were de
lared in the�le qgraf.dat. For example, if the external �elds are de
lared by means of the followingstatements in = positron, ele
tron ;out = higgs, muon minus, muon plus ;then the leg positron re
eives the in-index 1, the leg ele
tron re
eives the in-index 2, theleg higgs re
eives the out-index 1, the leg muon minus re
eives the out-index 2, and the legmuon plus re
eives the out-index 3.QGRAF uses six basi
 labellings (indi
es). The �eld and the ray indi
es | the last twotypes of indi
es to be presented | are de�ned over the set of (embedded) �elds.The �eld index uses the propagator and the leg indi
es. If a propagator has propagatorindex k then its two �elds re
eive the �eld indi
es 2k�1 and 2k (see �g. 3b); if the parti
leis di�erent from the anti-parti
le then the former gets the index 2k�1 and the latter theindex 2k. An external �eld re
eives a negative index that is related to the leg index ofthe 
orresponding external node. Spe
i�
ally, the �eld index of an in
oming (respe
tively,outgoing) �eld that has in-index (respe
tively, out-index) equal to j is de�ned as �2j+1(respe
tively, �2j). This means that the in
oming �elds re
eive odd indi
es (�1, �3, : : :)and the outgoing �elds re
eive even indi
es (�2, �4, �6, : : :). Although this labelling mayseem unnatural at �rst, it allows one to distinguish external �elds from internal ones | aswell as in
oming from outgoing �elds | without referen
e to any other quantities.A related quantity is the �eld type. It takes only three values, namely 1 (for in
oming�elds), 2 (for outgoing �elds), and 3 (for internal �elds).The sixth and last type of labelling will be 
alled ray index be
ause we may asso
iate(in a visual sense) a propagator emerging from a vertex as a ray. For every vertex, the ray



14 index labels the surrounding vertex �elds with the numbers 1, 2, : : : D (D being the degreeof the intera
tion), an example of whi
h is given in �g. 3
. In 
ontrast to other labellings,here labels di�er only within ea
h vertex; globally, there usually are repeated labels. Theray index is not always arbitrary: the index of an embedded �eld always 
oin
ides with theposition (or one of the positions) of the �eld name in the de�nition of the intera
tion givenin the model �le. For instan
e, if an intera
tion has been de�ned as[positron,ele
tron,photon℄then, for verti
es of this type, the �eld positron will always re
eive the ray index 1, the�eld ele
tron will always re
eive the ray index 2, and the �eld photon will always re
eivethe index 3, whi
h means that in this 
ase the labelling is unique (see �g. 3
). When theintera
tion 
ontains repeated �elds some arbitrariness remains.
A

A

A

Aψ

ψ

ψ ψ

ψ
_ψ

_
ψ
_

ψ
_(a)

(b) (c)

-1 -2

1

2

3

4

5

6

7

8

9

10

2 3

3

1

1

2

11
2

3

3

2Fig. 3. Revisiting the diagram presented in �g. 2: (a) a way of embedding theinternal �elds using auxiliary nodes, (b) the �eld indi
es, and (
) the ray indi
es.The embedded �elds are understood in both (b) and (
).We now have at our disposal two di�erent notations for the (embedded) �elds of adiagram. The �rst of these is a single-index notation: �i denotes the �eld with �eld indexi. There is also a two-index notation: �i;j denotes the �eld that belongs to vertex i (ie thevertex whose vertex index is equal to i) and whose ray index equals j. In the 
ase of �g. 3one has ��1 = �1;2 =  and �6 = �3;3 = A.Note that some of the indi
es presented in this se
tion | like the vertex index |are not 
ompletely determined in terms of a spe
i�
 and 
omplete rule: users 
annot predi
t(relying on this manual, only) eg, the vertex indi
es of the verti
es of a given diagram. Shouldthe undo
umented rules used internally by the program 
hange in the future, no problemsshould appear provided the user assumes no spe
ial property for the indi
es other than thegeneri
 ones presented above.



155.2 The propagator orientationThe program also provides a set of symboli
 expressions for representing the momen-tum 
ow, a feature that may be rather handy. It is obvious that in order to spe
ify themomenta throughout the diagram we will have to 
hoose a referen
e dire
tion for every prop-agator. What will be 
alled the propagator momentum is the momentum 
owing in thatdire
tion.Let us assume that the �eld embedding is properly de�ned, and that the �eld index ofevery embedded �eld is known. The a
tual rule for de�ning the propagator orientation is asfollows: we pi
k the dire
tion in whi
h, travelling along the propagator, the embedded �eldwith �eld index 2i is rea
hed before the one with �eld index 2i�1. This 
oin
ides with theparti
le 
ow whenever the parti
le and the anti-parti
le di�er.
k1

p1
k1+k2

k2+q1

q1

-k2

k1-p1Fig. 4. The symboli
 momenta for the diagram presented in �gs. 2{3.In �g. 4 one may see the symboli
 momenta for the diagram presented in �gs. 2{3. Itmay be veri�ed at on
e, by taking a look at �g. 3b, that the orientation of the propagators(indi
ated with arrows) is in agreement with the above mentioned rule involving the �eldindi
es.



16 6. Output 
ontrol IIn the �rst versions of QGRAF| before the release of version 2.0 | the list of diagramsin the output �le would be generated a

ording to a format sele
ted from a short list ofprede�ned output formats. Having a �xed number of predetermined formats is a self-limitingapproa
h. Sin
e every program that may be used to pro
ess the output of a diagram generatoris most likely bound to have its own notation, the number of formats, and thus the numberof subroutines, may have to be large. One alternative is that users write their own 
onversionsubroutines, one for every program they think of using. Another problem with the �xedformat approa
h is that it lessens the potential ability of the 
omputer program to in
orporateinto the output the parameters that are part of the model de�nition (parameters for the �elds,verti
es, et
). If one wishes to have (i) a model �le where the parameters are 
hosen by theuser and (ii) an output 
ontaining a sele
tion of those parameters, using a notation also
hosen by the user, then the �xed format approa
h is inadequate.In later versions there is a lot more 
exibility, sin
e the user has at his disposal asimple programming language to shape the output of the generator. It is not just a matterof 
hoosing the type of delimiters, spa
ing and similar marks. Now users 
an also 
hoose |the 
hoi
e is limited, of 
ourse | what information they want to have on the output. Inpra
ti
al terms, it goes like this: to get a new format a user has to provide a �le (hereafter
alled style �le) 
ontaining a rather simple program, and that is all there is to it. Users 
anhave a 
olle
tion of su
h �les, and use di�erent formats on di�erent o

asions. What we
laim is that it is mu
h easier to write su
h a �le than a full 
onversion routine. It may beimpossible to write a style �le that formats the output exa
tly like one wants; however, itshould be possible to write a style �le in su
h a way that the output �le 
an be pro
esseddire
tly by one's favourite 
omputer algebra system.In simple terms, the output of QGRAF is as follows. At the beginning of the �le (herewe are dis
ussing the output that is sent to a �le) there is a prologue that may 
ontain, forexample,� the name and the version of the program that generated the �le,� information required to identify the type of diagrams 
ontained in the �le (ie thestatements found in the �le qgraf.dat),� extra information supplied by the user to 
ommuni
ate with to another program thatwill read the �le (eg spe
ial marks to signal the beginning of the diagram listing).After that the diagrams are listed one by one, following a general pattern. Finally there is aset of lines/re
ords that usually serve to mark the end of the listing and/or the end of the�le (for example, it is important to know that QGRAF has generated all the diagrams, and didnot abort before 
ompleting the task). The 
hara
teristi
s of those three output se
tions arespe
i�ed in the style �le.The syntax of the style �le is 
ompletely di�erent from any syntax dis
ussed so far.Apart from 
omments | see below | that �le 
ontains `text' (printable ASCII 
hara
ters,that are taken literally) as well as keywords. A keyword is a reserved string that starts withthe 
hara
ter < and ends with the 
hara
ter >, eg <end>. The four keywords that delimit thespe
i�
ation of the output se
tions, and whi
h may be found in any of the style �les providedwith the program (the �les whose name ends in .sty), are the following.



17<prologue><diagram><epilogue><exit>Those keywords should always 
ome in that spe
i�
 order. Ea
h one of those keywords mustbe left-aligned on its own line, one 
ontaining no further information. Those four keywordsare the only ones that must appear in any style �le, and only on
e (note that a string like<exit> is not a keyword if it is part of a 
omment). Apart from syntax requirements allother keywords are optional | although a style �le 
ontaining no keyword other than thoserequired keywords is not terribly useful.The prologue spe
i�
ation starts on the line following the <prologue> keyword andends on the line that pre
edes the <diagram> keyword. Analogously, the diagram se
tionspe
i�
ation is bounded by lines 
ontaining the keywords <diagram> and <epilogue>, andthe epilogue spe
i�
ation 
omes between the lines de�ned by the keywords <epilogue> and<exit>. What 
omes either before the keyword <prologue> or after the line 
ontaining thekeyword <exit>, if anything, must 
onsist of blank lines or 
ommentary (ie lines startingwith the 
hara
ters already de�ned for the other input �les). In 
ontrast, in the 
ore part ofthe style �le | that 
onsists of the prologue, diagram se
tion, and epilogue spe
i�
ations |no 
omments are allowed and all the lines are taken as part of the output spe
i�
ation.QGRAF reads the style �le before starting generating diagrams, and it stores internallywhat it read. Just before it writes on the output �le (it may do this many times) theprogram builds a string, representing a number of lines or re
ords, by a sequen
e of twobasi
 operations: appending one or more 
hara
ters to the right end of the 
urrent string ordeleting its rightmost 
hara
ter. The style �le 
ontains the instru
tions to build ea
h su
hstring.6.1 The prologue se
tionFor the sake of illustration let us will 
onsider an imaginary style �le, one whoseprologue se
tions is de�ned by the following lines.## file generated by <program>#<
ommand loop># <
ommand data><end><ba
k>#  <ba
k> tsum := 0This example 
ontains most of the keywords that may be used in the prologue de�ni-tion, and is interpreted as follows. The program starts with an empty output string. Thenline 1 tells it to add a # as well as a newline 
hara
ter, whi
h is always inserted when theend of a line is rea
hed (to keep the dis
ussion as simple as possible, we will pretend thatthere is a newline 
hara
ter whose purpose is to mark the end of a line and impli
itly thebeginning of a new line, whenever there is one). Line 2 tells the program to add another 20



18 
hara
ters, then to perform the a
tion 
orresponding to the keyword <program>, and �nallyto add another newline 
hara
ter. The keyword <program> adds a string whi
h 
ontains theprogram's name and version number. What that string is may be dedu
ed from the prologuebelow, whi
h shows the a
tual output generated from the above spe
i�
ation (and from a �leqgraf.dat that may also be guessed from the same output).## file generated by qgraf-3.0##  output = 'qlist' ;#  style = 'sum.sty' ;#  library = '';#  model = 'qed' ;#  in = ele
tron ;#  out = ele
tron, photon ;#  loops = 3;#  loop momentum = k;#  options = floop, onepi ;#  tsum := 0Note that trailing blanks are ignored, no matter what type of input �le is being read (thereis usually some diÆ
ulty for a user to see them and, in addition, there is also some diÆ
ultyfor FORTRAN to read them). Line 4 from the prologue spe
i�
ation is more interesting: thekeyword <
ommand loop> tells the program to perform a loop (ie a programming loop):whatever is in between that keyword and the keyword <end> is exe
uted a number of times,on
e for every statement found in the �le qgraf.dat . The keyword <
ommand data> tellsthe program to insert the input statements in an orderly way, one statement ea
h time theloop is exe
uted. Note that a newline 
hara
ter is always part of every input statement(de�ning the end of the statement) and thus, in the above example, every iteration of theloop starts writing on a new line.The keyword <ba
k> deletes the rightmost 
hara
ter from the output string that isbeing built (this may generate an error if the string is temporarily empty). In the aboveexample there are two o

urren
es of that keyword: the �rst one serves to delete the newline
hara
ter from the last input statement, in order not to have two 
onse
utive newline 
har-a
ters; in the se
ond instan
e the purpose is to delete the se
ond blank 
hara
ter on line 6,leaving a single blank (here is a way of generating trailing blanks). The keyword <ba
k>may also be used to 
on
atenate lines from the style �le. This may be useful if one wishes tosplit a long line into two or more input lines. One reason for doing this is that the programassumes that input lines, from whatever input �le, 
ontain at most 80 (printable) 
hara
ters.For example, the two input linesThis is a<ba
k> single line !will be 
on
atenated, sin
e <ba
k> will delete the newline 
hara
ter separating them (aslong as the 
hara
ter < is in 
olumn 1). The use of <ba
k> requires the program not to writea line as soon as it �nds a newline 
hara
ter; instead, the output string is not written untilthe prologue spe
i�
ation has been fully exe
uted (and similarly for other output se
tions).The keyword <ba
k> may appear in any of the output se
tions; however, there 
an be no



19interferen
e among di�erent se
tions (nor, in the 
ase of the diagram se
tion, interferen
ebetween di�erent diagrams).Let us 
onsider on
e more the previous prologue spe
i�
ation and the 
orrespond-ing output. A simple examination of the output reveals that ea
h 
ommand from the �leqgraf.dat o

upies a single line. However, if one rewrites that �le so that at least onestatement o

upies more than a single line then the output may in
lude something like this:#  output  =   'qlist' ;That may or may not be what one whishes to obtain. QGRAF o�ers another possibility: onemay use another kind of loop de�ned by the keyword <
ommand line loop>, nested insidethe loop de�ned by <
ommand loop>, eg,<
ommand loop><
ommand line loop># <
ommand data><end><ba
k>#<end>#The number of times that the inner loop is exe
uted is equal to the number of lines in theinput statement being addressed (whi
h depends on the iteration of the outer loop), and thekeyword <
ommand data> is now iteratively repla
ed by a single line of that statement. Thelatter example provides a way to have all output lines beginning with a hash sign, even ifsome input statements extend a
ross two or more lines; in addition, it provides a separatingline between di�erent 
ommands. Here is a fragment of the 
orresponding output:#  output#   =#    'qlist' ;##  style = 'sum.sty' ;#It should be noted that the keyword <
ommand data> is never repla
ed by empty lines and/or
omments, only 
ommands or lines that are part of a 
ommand, depending on the type ofloop. To present still another example, here is one spe
i�
ation that will format statementso

upying more than one line into a single line:<
ommand loop># <
ommand line loop><
ommand data><ba
k><end><end>#There are �ve ex
eptional 
ases for representing 
hara
ters in the style �le. The �rst
ase is that of a blank (spa
e 
hara
ter), if it is a trailing blank (see above). The otherfour 
ases are as follows (on the left hand side there are the ASCII 
hara
ters one wishes torepresent, and on the right hand side are the respe
tive en
odings).< ! <<> ! >>[ ! [[℄ ! ℄℄



20 This means that those four 
hara
ters must be dupli
ated in the style �le if they are toappear in the output �le. With the help of this 
onvention one may always tell `text' andkeywords apart. The �rst two of those ex
eptions are due to the use of the 
hara
ters < and> in the delimitation of intrinsi
 keywords. The square bra
kets play a similar role in the
ase of keywords de�ned by the user.6.2 The epilogue se
tionThe epilogue se
tion may 
ontain all the keywords allowed in the prologue se
tion,plus an additional one dis
ussed below. This means that all the information about the input
ommands and the version of the program may be printed in the epilogue se
tion instead, oreven in both se
tions.The additional keyword is <diagram index>. As it will be seen in the next subse
tion,that keyword is mainly dire
ted at the diagram se
tion, where it instru
ts the program toprodu
e a string representing the number of diagrams generated so far, in
luding the 
urrentdiagram. By a simple extension, in the epilogue se
tion that keyword will produ
e a stringrepresenting the total number of diagrams generated by the 
omputer program in that run.6.3 The diagram se
tionThe keywords may be divided into two main 
lasses. One 
lass 
ontains what one may
all 
ontrol keywords; they serve to delimit the output se
tions, to de�ne the programmingloops, et
, but do not generate information by themselves. In this 
lass we may �nd keywordslike <diagram>, <
ommand loop>, <end>, and <ba
k>. A se
ond 
lass 
ontains the keywordsthat instru
t the program to append information to the output string; these will be 
alleddata keywords. Up to now we have already seen three data keywords, namely <program>,<
ommand data>, and <diagram index>, but many more exist.Data keywords may themselves be divided into lo
al and global keywords. Lo
alkeywords are those that must be used inside one of the programming loops a

epted in thestyle �le, while global keywords have no su
h restri
tion. Global keywords don't have tobe 
onstants, for example the keyword <diagram index> will produ
e di�erent strings atdi�erent stages.We will now dis
uss the diagram se
tion, whi
h is obviously the most important. Thereare many keywords that may be used in that se
tion, most of whi
h are data keywords. Theglobal keywords are listed below.� <diagram index> | a positive integer spe
ifying the order in whi
h a diagram wasgenerated (ie 1 for the �rst diagram, 2 for the se
ond diagram, et
)� <legs> | the number of external �elds of the diagram� <legs in> | the number of in
oming �elds� <legs out> | the number of outgoing �elds� <loops> | the number of loops of the diagram



21� <minus> | similar to <sign> (see below) if the diagram sign is minus, otherwise itprodu
es an empty string� <propagators> | the number of internal edges of the diagram� <sign> | the diagram sign (either a plus or a minus sign) that follows from theanti-
ommutation rules� <symmetry fa
tor> | the diagram symmetry fa
tor (either 1, if there are no sym-metries, or a fra
tion like 1/2, 1/6, et
)� <symmetry number>| the diagram symmetry number (a positive integer equal to there
ipro
al of the symmetry fa
tor)� <verti
es> | the number of internal nodes of the diagramThere are �ve main types of programming loops in the diagram se
tion, and everyone of them is optional. The keywords <in loop><out loop><propagator loop><vertex loop>announ
e four of those loops | to be 
alled, respe
tively, in
oming loop, outgoing loop,propagator loop, and vertex loop | and the keyword <end> 
loses them. Those loops areexe
uted as many times as there are (respe
tively) in
oming parti
les, outgoing parti
les,propagators, and verti
es in the diagram being listed. During the exe
ution of su
h a loopthe program prepares itself to inspe
t the relevant 
lass of obje
ts (ie legs, propagators, orverti
es) and prints information about them if it is requested to do so.The �fth loop is de�ned by the keyword <ray loop> and it should always appearnested inside the vertex loop, like this:<vertex loop> ... <ray loop> ... <end> ... <end>The ray loop is needed to tell the program to inspe
t every line in
ident with the vertex thatis impli
itly de�ned by the vertex loop.Those �ve programming loops form the basi
 tool to a

ess the lo
al information thatde�nes a diagram. By lo
al information we mean that it refers either to the 
omponent of thediagram being examined, or to some neighbouring 
omponent (as opposed to a 
omponentthat is on a remote part of the diagram, so to say). For instan
e, if the obje
t being inspe
tedis a vertex v0 then some information regarding the verti
es adja
ent to v0 is also availableat that moment, as is the information on the propagators (or external lines) in
ident withv0. However, at the time that v0 is inspe
ted no information about more remote obje
tsis available, with the obvious ex
eption of the information provided by the global keywordspresented above.What remains to be explained here is whi
h (lo
al) keywords may be used inside whi
hloops, as well as what the keywords stand for. The former of those issues is addressed in thetable shown below. A given lo
al keyword may be used in a 
ertain loop type i� the respe
tivetable entry is marked with a full 
ir
le. The loop types are denoted by their initials | i forin
oming loop, r for ray loop, et
. It is 
lear that if a keyword may be used in the vertexloop then it may also be used in the ray loop | although the information it represents willremain 
onstant while the ray loop is exe
uted.



22
i-loop o-loop p-loop r-loop v-loop<dual-field> � � � �<dual-field index> � �<dual-momentum> � � � �<dual-ray index> � �<dual-vertex degree> � �<dual-vertex index> � �<field> � � � �<field index> � � � �<field sign> � � � �<field type> � � � �<in index> �<leg index> �<momentum> � � � �<out index> �<propagator index> � �<ray index> � � � �<vertex degree> � � � � �<vertex index> � � � � �The exa
t de�nition of a lo
al keyword depends on the type of loop where it is used.We will now review the basi
 loop types and des
ribe all those keywords.

6.3.1 The propagator loopThe propagator loop is exe
uted as follows: when the program �nds the keyword<propagator loop> it assigns the value 1 to the 
orresponding loop index, preparing itself toexamine the propagator whose propagator index is equal to 1. Then it 
ontinues exe
ution,printing the information requested about that propagator until it �nds the keyword <end>.At that point it in
rements the loop index to 2, and the rest you may guess. It only exits theloop when all the propagators have been visited. Let us re
all that if a propagator has beenassigned a propagator index i then the 
orresponding �elds are �2i�1 and �2i.To have an idea of the information available during the exe
ution of the propagatorloop one may observe �g. 5, whi
h has been obtained by grouping together �gs. 2{4 butretaining only part of the original diagram, namely propagator 5 and its neighbourhood.
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Fig. 5. Some lo
al information available in the propagator loop: (a) vertex index,(b) propagator index, (
) propagator �elds, (d) �eld index, (e) ray index, and (f)propagator momentum.A list of the keywords allowed in the propagator loop is given below. Ea
h entry
ontains a keyword, its meaning, and an output string generated by that same keyword. Theoutput string is the one that would be obtained in the des
ription of the propagator shownin �g. 5 (the string is in parenthesis, after the arrow symbol), in whi
h 
ase we may identify with ele
tron and  with positron.� <dual-field> | the name of the �eld �2i ( ! positron )� <dual-field index> | the unsigned integer 2i ( ! 10 )� <dual-momentum> | the symmetri
 of <momentum> ( ! -k1-k2 )� <dual-ray index> | the ray index of the �eld �2i ( ! 1 )� <dual-vertex degree> | the degree of the intera
tion vertex to whi
h the �eld �2ibelongs ( ! 3 )� <dual-vertex index> | the vertex index of the intera
tion vertex to whi
h �2ibelongs ( ! 3 )� <field> | the name of the �eld �2i�1 ( ! ele
tron )� <field index> | the unsigned integer 2i�1 ( ! 9 )� <field type> | the �eld type of the �eld �2i�1, whi
h is always equal to 3 ( ! 3 )� <field sign> | the sign of propagator i ( ! - )� <momentum> | the momentum of propagator i ( ! k1+k2 )� <propagator index> | the unsigned integer i ( ! 5 )� <ray index> | the ray index of the �eld �2i�1 ( ! 2 )� <vertex degree> | the degree of the vertex that 
ontains �2i�1 ( ! 3 )� <vertex index> | the vertex index of the vertex that 
ontains �2i�1 ( ! 4 )



24 6.3.2 The leg loopsLet r (respe
tively, s) be the number of in
oming (respe
tively, outgoing) parti
les.Those parti
les are listed in the �le qgraf.dat in a 
ertain order, and we will denote the nthin
oming (respe
tively, outgoing) parti
le by �inn (respe
tively, �outn ).As seen earlier, there are two types of leg loops, the in
oming loop and the outgoingloop. In the former 
ase the loop is exe
uted r times, on
e for ea
h in
oming �eld, while inthe latter 
ase the loop is run s times, on
e for ea
h outgoing �eld (the legs of the diagramare, rather obviously, the main obje
ts that are a

essed in those loops).Let us 
onsider �rst the in
oming loop, where the loop 
ounter i runs from 1 to r. Letvk be the vertex that leg i is in
ident to, and j the ray index (with respe
t to that vertex) ofthe �eld �ini . The �eld �ini 
an then be identi�ed with �k;j .The same diagram that has been used before (�gs. 2{4) is also used here as a basisfor the dis
ussion. Its legs are the ones spe
i�ed by the following statements,in = ele
tron ;out = ele
tron ;and thus the output presented with every keyword 
ontains a single string (sin
e r=s=1).� <dual-field> | the 
onjugate of <field> ( ! positron )� <dual-momentum> | the symmetri
 of <momentum> ( ! -p1 )� <field> | the name of �ini ( ! ele
tron )� <field index> | the �eld index of �ini ( ! -1 )� <field type> | the �eld type of �ini ( ! 1 )� <field sign> | the sign of �ini ( ! - )� <in index> | the unsigned integer i ( ! 1 )� <momentum> | the momentum 
owing into the diagram through leg i ( ! p1 )� <ray index> | the unsigned integer j, whi
h is the ray index of �k;j ( ! 2 )� <vertex degree> | the vertex degree of vk ( ! 3 )� <vertex index> | the vertex index of vk, whi
h is the unsigned integer k ( ! 1 )If the loop type is <out loop> some of the above de�nitions need to be 
hanged. Theloop 
ounter i goes from 1 to s, but the leg index goes from r+1 to r+s. The keyword<field> now produ
es outgoing �elds, and the momentum dire
tion is the one leaving thediagram. Thus �k;j is now the 
onjugate of �outi .� <dual-field> | the 
onjugate of <field> ( ! positron )� <dual-momentum> | the symmetri
 of <momentum> ( ! -q1 )� <field> | the name of �outi ( ! ele
tron )� <field index> | the �eld index of �outi ( ! -2 )� <field type> | the �eld type of �outi ( ! 2 )� <field sign> | the sign of �outi ( ! - )



25� <leg index> | the unsigned integer r+i ( ! 2 )� <momentum> | the momentum leaving the diagram through leg i ( ! q1 )� <out index> | the unsigned integer i ( ! 1 )� <ray index> | the unsigned integer j, whi
h is the ray index of �k;j ( ! 1 )� <vertex degree> | the vertex degree of vk ( ! 3 )� <vertex index> | the vertex index of vk, whi
h is the unsigned integer k ( ! 2 )6.3.3 The vertex and the ray loopsThe vertex loop tells the program to visit the internal verti
es of the diagram, andthe ray loop that it should also visit every line in
ident with ea
h su
h vertex. The twoindi
es that 
ontrol these loops are the vertex index and the ray index (in the following wewill denote them by i and j, respe
tively).
vi vk

Pm

Φk,lΦi,j

vi

Pm

Φi,lΦi,j

vi

Φi,jFig. 6. Basi
 notation used in des
ribing the vertex and ray loops.A vertex vi of degree di 
omprises the �elds �i;j, for j=1; : : : di. Fig. 6 illustrates thethree possible 
ases for �i;j : it 
an be an external �eld (left), an internal �eld that is partof a propagator joining two di�erent verti
es (
entre), or an internal �eld that is part of apropagator built from two �elds of the same vertex (right). If, for a given value of j, �i;j isan internal �eld then there is a propagator Pm 
onne
ting vi to another vertex vk (or else
onne
ting vi to itself, in whi
h 
ase we just set k = i); that propagator also 
ontains another�eld | belonging to vk | whi
h is the 
onjugate of �i;j and that will be denoted by �k;l.Observe that vk and �k;l are both unde�ned whenever �i;j is an external �eld.In the ray loop the keyword <momentum> refers to the momentum 
owing a
ross theedge to whi
h �i;j is atta
hed, in the dire
tion that is shown graphi
ally in �g. 6 by means ofarrows. Loosely, this graphi
al rule gives the momentum 
owing into vertex vi 
oming fromthat edge, ex
ept that if �i;j is an internal �eld and i = k then this wording must be mademore pre
ise.Fig. 7 
ontains part of the Feynamn diagram presented earlier in this se
tion | itshows vertex 1 and its neighbourhood | and will also be used for illustrating the meaningof the keywords presented below. This time the output of the program given with ea
h entrymay be divided into two 
ases. For the keywords that do not require the use of the ray loop
onstru
tion the output string 
ontains a single label, the one 
orresponding to vertex 1. Forthe other keywords the output string is 
omposed of three sub-strings (sin
e the degree ofvertex 1 is equal to 3), one for ea
h ray index; that means that the exe
ution of the ray loopis simulated, but the exe
ution of the vertex loop is not.



26 � <dual-field>| the name of the 
onjugate of �i;j (! ele
tron positron photon )� <dual-field index> | the �eld index of �k;l if that �eld exists, otherwise zero ( !1 0 4 )� <dual-momentum> | the symmetri
 of <momentum> ( ! k1 -p1 -k1+p1 )� <dual-ray index> | the ray index of �k;l (ie the unsigned integer l) if that �eldexists, else zero ( ! 2 0 3 )� <dual-vertex degree> | the degree of the intera
tion vertex vk if it exists, else zero( ! 3 0 3 )� <dual-vertex index>| the vertex index of vk (ie the unsigned integer k) if it exists,otherwise zero ( ! 3 0 4 )� <field> | the name of the �eld �i;j ( ! positron ele
tron photon )� <field index> | the �eld index of �i;j ( ! 2 -1 3 )� <field type> | the �eld type of �i;j ( ! 3 1 3 )� <field sign> | the sign of �i;j ( ! - - + )� <momentum> | the momentum 
owing into vertex vi 
oming from the edge to whi
h�i;j is atta
hed, as explained before ( ! -k1 p1 k1-p1 )� <propagator index> | the propagator index of Pm (ie the unsigned integer m) if itexists, otherwise the �eld index of the external �eld �i;j ( ! 1 -1 2 )� <ray index> | the unsigned integer j ( ! 1 2 3 )� <vertex degree> | the degree of vertex vi ( ! 3 )� <vertex index> | the unsigned integer i ( ! 1 )
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AFig. 7. Basi
 information available in the vertex loop.



27Five keywords | <dual-field index>, <dual-ray index>, <dual-vertex index>,<dual-vertex degree>, and <propagator index> | are de�ned in a pe
uliar way whenthe ray index j de�nes an external edge. This is done for two main reasons: it eitherensures 
ompatibility with earlier pre-de�ned formats or it provides more information thana straightforward de�nition would. The 
ore issue is the same: either one does not a

eptany of those keywords as valid, or else one must de�ne them ad ho
 for the 
ases where anatural de�nition fails to exist (ie for verti
es in
ident with external lines). An additionalkeyword, <dual-field>, is de�ned in a way that is not 
onsistent with the meaning of thepre�x dual- as used in other keywords; in addition, if it were 
onsistent in that regard thenit would su�er from the same problem that the other �ve keywords do. This problem willhopefully rea
h an a

eptable status in a future release, as other features be
ome available.6.4 The diagram signThe diagram sign 
omputed by QGRAF is equal to (�1)TA , with TA being the numberof transpositions of anti-
ommuting �elds that are needed to bring those �elds from theirnatural vertex ordering (de�ned in the model �le) to the ordering de�ned by the propagatorpairing plus an ad ho
 reordering of the unpaired �elds. The unpaired �elds are ordereda

ording to their leg indi
es, the outgoing �elds to the left of the in
oming �elds, the formerin in
reasing order and the latter in de
reasing order:( �� out1 �� out2 ... �� outs ) ( �inr ... �in2 �in1 ).As an example, let's take the diagram displayed in �gs. 2{4, and assume the usual�  A� ordering for the intera
tion vertex. Using the �eld indi
es given before, the vertexprodu
t 
an be written as( 	2 	�1 A3 ) ( 	�2 	7 A5 ) ( 	10 	1 A6 ) ( 	8 	9 A4 ).After dis
arding the 
ommuting �elds a simple reordering will lead to+ ( 	�2 ) ( 	�1 ) ( 	1 	2 ) ( 	7 	8 ) ( 	9 	10 ).Hen
e QGRAF will say that the sign of that diagram is +.Users don't really have to use the diagram sign 
omputed by QGRAF. As it should be
lear by now, it is very simple to omit any referen
e to the diagram sign in the output �le,and then users are free to implement their own de�nition.6.5 A �rst survey of output stylesThe set of available keywords is 
ertainly not a minimal set. Also, from a stri
t pointof view, one does not need three di�erent types of loops. The advantage of this abundan
eis that one 
an 
hoose the features that suit one best (for example, some features whi
h areinstantly available 
ould require some extra programming if a minimal set were used).The main issue 
on
erning the 
hoi
e of output style is the pro
essing of the expressionsbuilt by QGRAF. The output styles de�ned by the �les sum.sty, array.sty, and form.stymay serve to illustrate three di�erent approa
hes. The �rst one 
onsists in 
ombining all thesymboli
 expressions into a single expression, that is, to add them up. Further pro
essing maybe problemati
 if the number of diagrams is large. In the se
ond approa
h an array/ve
tor



28 is de�ned, ea
h 
omponent storing the symboli
 expression for a single diagram; then thepro
essing program reads the whole array and manipulates all the expressions in a singlerun. In some 
ases this may still be problemati
, or just ineÆ
ient. In the third approa
h,whi
h has been used together with FORM [3℄, the expressions are still kept in a single �le butea
h expression 
an be read and pro
essed separately.
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-3

-1 -2
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k1

Fig. 8. A diagram from QED, and the 
orresponding �eld indi
es (the embedded�elds are understood).Let us now look at the output produ
ed by the style �les array.sty and form.stythat are part of release 3.0. Although the 
orresponding output styles are outdated, a briefanalysis of those styles 
an still be pro�table if it provides a basis for building other outputstyles. The examples presented below refer to the diagram shown in �g. 8. The �rst of thoseuses the �le array.sty:a(1):= (+1)*pol(e(-1,p1))*pol(p(-3,p2))*pol(A(-2,q1))*pol(A(-4,q2))*prop(A(1,-k1))*prop(e(5,-k1-p2))*prop(e(3,-k1+p1))*prop(e(7,-k1+p1-q1))*vrtx(p(4,k1-p1),e(-1,p1),A(1,-k1))*vrtx(p(-3,p2),e(5,-k1-p2),A(2,k1))*vrtx(p(8,k1-p1+q1),e(3,-k1+p1),A(-2,-q1))*vrtx(p(6,k1+p2),e(7,-k1+p1-q1),A(-4,-q2));The numbers that appear in the above expression as arguments of the �elds are the �eldindi
es. All the allowed types of programming loops are used. The propagators have a singleargument sin
e the se
ond argument would not 
ontain new information (the se
ond �eldwould be the 
onjugate of the �rst, the se
ond index would be equal to the su

essor of the�rst, and the momentum would be the symmetri
 of the �rst).Using the �le form.sty the same diagram is des
ribed as follows.*--#[ d1:* 1*vx(p(2),e(-1),A(1))*vx(p(-3),e(3),A(1))



29*vx(p(4),e(2),A(-2))*vx(p(3),e(4),A(-4))**--#℄ d1:Here only the propagator index is used; the two �elds with a 
ommon argument belongto the same propagator, and �elds whose argument does not mat
h are the external �elds.This notation seems to be insuÆ
ient for models 
ontaining Majorana �elds (the ones forwhi
h the parti
le and the anti-parti
le 
oin
ide and the �eld 
omponents anti-
ommute).



30 7. Output 
ontrol IIIn the previous se
tion we dis
ussed the output features that are available by default.However, as seen in the se
tion \Model Con�guration", it is possible to de�ne parametersfor the �elds, propagators and verti
es of a model. The subje
t of the present se
tion is thenhow to make use of su
h parameters, ie how to program the style �le so that they appear inthe output �le.7.1 Field, propagator, and vertex fun
tionsLet us go ba
k to QED, and 
onsider the following model �le:% 
onstants% propagators[ele
tron, positron, - ; pfun
t= 'S', m= 'me'℄[photon, photon, +; pfun
t = 'P', m= 'm0' ℄% ele
tromagneti
 vertex[positron,ele
tron,photon; gpow = '1' ℄We may interpret the fun
tion pfun
t as representing the \propagator fun
tion" and m asthe \propagator mass". Coupling that model �le with the following 
ode (whi
h is meant tobe part of the diagram se
tion of the style �le)<propagator loop> [pfun
t℄(<momentum>,[m℄)*<end>leads, in the 
ase of the diagram represented in �g. 4, to the following output: S(k1,me)* P(k1-p1,m0)* P(-k2,m0)* S(k2+q1,me)* S(k1+k2,me)*In this elementary example we 
an see how to obtain an output where ea
h propagator typehas its own name, and its own mass. As seen earlier, impli
itly de�ned fun
tions (ie thosethat are de�ned within QGRAF) are denoted by strings en
losed in angle bra
kets (in fa
t,the symbols < and >). Now we may see that the fun
tions de�ned by the user should havetheir names en
losed in square bra
kets when referred to in the style �le. This prevents anyinterferen
e between the two sets of fun
tions, and so the user 
an de�ne his fun
tions byany valid identi�er.



31It is probably worth stressing that the type of fun
tions 
onsidered in this subse
tionhave as their domain a set of obje
ts from the model �le, not a set of embedded obje
ts.In other words, when the 
omputer program evaluates say, the result 
orresponding to thefun
tion represented by the string [pfun
t℄ it only looks at the �eld names that appear inthe propagator, not at the propagator index; hen
e [pfun
t℄ gives the same result for allembedded propagators sharing the same �elds (ie, �eld names).As seen in the previous se
tion, keywords like <field> and <vertex index> 
an beused in more than one kind of loop provided one makes appropriate de�nitions in ea
h 
ase.In a parallel way one may a

ept the in
lusion of user de�ned fun
tions in more than onetype of loop. This holds even for propagator fun
tions, whi
h are always seen as a spe
ial
ase of �eld fun
tions. In some 
ases the user de�ned fun
tions may be pre�xed with thestring dual-, just like some intrinsi
 fun
tions.Propagator fun
tions are treated mostly like �eld fun
tions in what 
on
erns theoutput of the program; the only di�eren
e is that the pre�x dual- will not be allowed. Thefollowing table shows whi
h kind of fun
tions are allowed in whi
h type of loop (the presen
eof a full 
ir
le in a matrix entry denotes permission, and its absen
e interdi
tion).i/o-loop p-loop r-loop v-loop[ff℄ � � �[dual-ff℄ � � �[pf℄ � � �[dual-pf℄[vf℄ � � � �[dual-vf℄ �The strings ff and vf denote generi
 �eld and vertex fun
tions, respe
tively; they map �elds� and verti
es � from the model into strings ff(�) and vf(�). The string pf denotes ageneri
 propagator fun
tion. The de�nitions of the fun
tions listed in the above table dependon the type of loop they appear in, but it is possible to present uni�ed de�nitions using afew intrinsi
 keywords that are loop dependent.� [ff℄ | the string ff(�) where � is the �eld that <field> refers to� [dual-ff℄ | the string ff(�) where � is the �eld that <dual-field> refers to� [pf℄ | the string pf(�) where � is either of the �elds denoted by <field> and<dual-field>� [vf℄ | the string vf(�) where � is the intera
tion vertex whose vertex index is givenby <vertex index>� [dual-vf℄ | the string vf(�) where � is the intera
tion vertex whose vertex index isgiven by <dual-vertex index>Note that 
alling [dual-vf℄ in the ray loop would lead to problems. This issue is linked tothe fa
t that some intrinsi
 fun
tions have abnormal de�nitions in this type of loop, and willhopefully be resolved in a later release.



32 7.2 The 
onstantsThe dis
ussion about the �rst part of the model �le, whi
h was omitted in se
tion 3,is the subje
t of the present subse
tion. That part of the model �le is the pla
e where tode�ne the 
onstants of the model. That 
ould be a name for the model, or some other stringthat should appear in the output �le, even as a 
omment. Admittedly, the 
hoi
e is ratherlimited; the usefulness of that part of the model �le will hopefully in
rease in the future whennon-
onstants are allowed to 
ome into play.The following statement shows a typi
al de�nition of a 
onstant (note that any su
hstatement should de�ne a unique 
onstant).[ model = 'massless QCD in D=4-eps dimensions'℄If the 
onstant model is de�ned on a set of model �les then it is possible to use the keyword[model℄ in (say) the prologue of a style �le and spe
ify in a more pre
ise manner the modelwhi
h is being 
onsidered instead of just guessing from the model �lename (it is being assumedthat there is a style �le shared by various models).Constants may be used in any se
tion of the style �le, and may be invoked just like the�eld/propagator/vertex fun
tions, ie en
losing the name of the 
onstant in square bra
kets.



338. The s
reen outputEven when there is no output �le there is a minimal output sent to the default outputlogi
al unit, usually some window on the s
reen. That output 
onsists mainly of the followinginformation: (a) the version of the program, (b) the statements found in the �le qgraf.dat,(
) the model partitions, (d) the possible vertex degree partitions and, for every su
h partition,the mat
hing number of diagrams, and (e) the total number of diagrams found. Here is anexample:-------------------------------------------------------qgraf-3.0-------------------------------------------------------output = 'qlist' ;style = 'qgraf.sty' ;library = '' ;model = 's
alar' ;in = H, H ;out = H, H ;loops = 2 ;loop momentum = k ;options = onshell ;-------------------------------------------------------model partitions: P^1 V^2B^1 3^1 4^1-------------------------------------------------------- 4^3 --- 12 diagrams3^2 4^2 --- 300 diagrams3^4 4^1 --- 457 diagrams3^6 - --- 153 diagramstotal = 922 diagrams-------------------------------------------------------The �rst model partition shows the number of propagators (the exponent of P) andthe number of verti
es (the exponent of V) found in the model �le. The se
ond partitionis a re�nement of the �rst, and displays the following numbers, if positive: the number ofbosoni
 propagators (the exponent of B), the number of fermioni
 propagators (the exponentof F), and the numbers of verti
es with degree 3, 4, et
 (the number of verti
es with degreek is the exponent of k in that expression). Terms 
orresponding to null values are omitted.The example we have just presented 
orresponds to a run where the model has a single



34 propagator (that of a real bosoni
 �eld) and two verti
es (one 
ubi
 and one quarti
 self-intera
tion terms).Let �k (k = 3; 4; :::) be the number of verti
es of degree k in some Feynman diagramwith a given number of legs and number of loops. If the last two numbers are kept �xed andthe �k are regarded as variables, then it should be 
lear that there is a �nite number of possiblesolutions for the ve
tor � = (�3; �4; :::). For example, there is no 1-loop propagator diagramhaving 8 
ubi
 verti
es. Ea
h vertex degree partition is a possible solution for the ve
tor �(possible in the sense that it satis�es the basi
 partition-like equation) and is displayed usinga 
ommon notation for partitions. If we go ba
k to our previous example we will see that theprogram found 12 diagrams with three quarti
 verti
es (and none 
ubi
), 300 diagrams withtwo 
ubi
 verti
es and two quarti
 ones, et
.



359. Symmetri
 theoriesQGRAF is most suitable for broken-symmetry models. However, in the 
ase of symmetri
theories some extra work is usually wanted. For the purpose of illustration let us take QCD(6x3 quarks, 8 gluons and 2x8 ghost �elds). It is 
learly possible to obtain a list of all thegraphs for a parti
ular pro
ess provided that the model �le lists all the intera
tions of thatmodel, that is, all the verti
es for all possible 
olour indi
es (there are roughly 200 verti
es forQCD). This will result in a very large number of diagrams, whi
h is not what one usually wants.One usually prefers a shorter list where ea
h generi
 diagram represents all the diagrams ofthe larger list that di�er only in the values of some 
olour indi
es. However, this approa
hrequires the 
omputation of algebrai
 fa
tors (the so-
alled 
olour tra
es) to take into a

ountthe 
ontributions of the diagrams represented by ea
h generi
 diagram.The shorter list may be obtained in a simple way, by not in
luding 
olour indi
es (ietyping in the model as if there were eg 6 quarks, 1 gluon and one pair of ghosts). But thenone should rely on other means to get the 
olour tra
es. If the diagrams are to be evaluatedsymboli
ally with the help of a 
omputer then one may use a 
omputer algebra program tohave the 
olour tra
e 
omputed. This is not a trivial task, spe
ially if one wants to have asomewhat arbitrary gauge group [4℄.



36 10. InstallationQGRAF is almost entirely written in standard FORTRAN-77. Depending on your 
om-piler, you may have to exe
ute the following steps (before 
ompiling the 
ode) in order toeliminate the nonstandard features.� adjust the OPEN statements (4 o

urren
es) to your system/
ompiler requirements;by default, those statements in
orporate two nonstandard quali�ers (readonly and
arriage
ontrol) that work only with a restri
ted set of 
ompilers. If you get anerror message from your 
ompiler, remove the in
ompatible quali�ers.� 
hange 
hara
ters to upper
ase if ne
essary.Summarizing: adjust the 
ode to your needs; 
ompile, link, and then exe
ute (themodel �le, the style �le, and the �le qgraf.dat should be provided). Please note that theprogram must be 
alled from the dire
tory where the �le qgraf.dat is lo
ated. It shouldbe a good idea trying to reprodu
e some of the numbers listed in ref. [1℄. Please report anydis
repan
ies.As the program does not allo
ate memory dynami
ally, the size of the memory neededto store all the information supplied to and/or used by the program is 
ontrolled by meansof parameters, and thus set when the program is 
ompiled. When the default values of thoseparameters are insuÆ
ient for QGRAF to handle su

essfully a 
ertain problem the programwill abort. However, if one adjusts (ie in
reases by a suÆ
ient ammount) the values of therelevant parameters and re
ompiles the sour
e 
ode, the program will be able to run. Aserious e�ort has been made with version 3.0 to redu
e the number of parameters that theuser might have to 
hange. If a model 
ontains many �elds, verti
es, fun
tions, et
, then thefollowing parameters may have to be in
reased.� sibuff | the dimension of the integer array where most integer values are stored� s
buff | the size of the 
hara
ter bu�er where most strings are storedThose parameters are set in the following statementparameter ( sibuff=524288, s
buff=131072 ),whi
h appears in several routines.The bounds on the number of loops and legs are as follows.loops � maxrho1 � legs � maxleglegs + loops � max(maxrho,maxleg)3 � legs + 2*loopsThe default values for maxrho and maxleg are 5 and 9, respe
tively. Those parameters 
anbe 
hanged, but in pra
ti
e that won't be needed often, if ever. Users requiring higher valuesshould take extra pre
autions as the present 
ross 
he
ks on the program do not 
over thatdomain. In addition, the implemented algorithm is not eÆ
ient for large values of nloop. Afaster sub-algorithm is under study (low priority). In any 
ase, the number of graphs tendsto in
rease very rapidly with the number of loops | roughly in a fa
torial like way | andthe average time to generate a single graph also in
reases somewhat.



3711. UpdateVersion 3.0 represents the se
ond stage towards the goal of providing a truly pow-erful built-in tool to shape the output of the program. This time, support for user-de�nedparameters has been in
luded. Other signi�
ant improvements in
lude: (a) a more 
exiblesyntax in �le qgraf.dat and in the model �le, and (b) a redesign of the program in order to(i) redu
e the number of parameters that may have to be 
hanged by the user and (ii) easethe future implementation of better memory allo
ation te
hniques. That redesign required asubstan
ial rewriting of the 
omputer program.There are several 
hanges with respe
t to version 2.0 (see below for a list). Not every
hange may be 
lassi�ed as stri
tly ne
essary but, given that some 
hanges were needed, afew others whi
h 
ould be helpful in some way (parti
ulary in 
larifying the notation, ormaking it more uniform) were also implemented. The entries that are marked with an open
ir
le are the ones that introdu
e in
ompatibilities | in the sense that input �les valid forversion 2.0 require (or may require) some modi�
ation before being a

epted by version 3.0.Let us start with the 
hanges related with the input �le qgraf.dat:� statements may be split a
ross multiple linesÆ option notadp has been repla
ed by notadpole� some new options, mostly duals of the previously existing ones (eg onepr, tadpole)� two new operators (sbridge and rbridge) allowed in the optional statementsThe 
hanges regarding the model �le are:� �eld/propagator/vertex parameters may be de�ned� identi�ers may be longer� statements may be split a
ross multiple lines� verti
es no longer have to be listed in order of as
ending degreeÆ new keywords external and notadpole repla
e old notation (p and t) in propagatorde
larationsFinally, the 
hanges for the style �le:� the parameters from the model �le may be used in the output spe
i�
ation� new keyword <field type>Æ new loops <in loop> and <out loop> repla
e <leg loop>Æ keyword <sub loop> has been repla
ed by <ray loop>Æ keyword <propagator index> substitutes <edge index>Æ keyword pre�x dual has been repla
ed by dual-Æ <
ommand loop>, <
ommand line loop> and <
ommand data> supersede keywords<prologue loop> and <data>Æ the keywords <leg field> and <leg momentum>, as well as their duals, are obsolete� all the keywords a

epted in the prologue se
tion may be used in the epilogue se
tion



38 12. Final 
ommentsQGRAF is 
opyrighted software that may be freely used for a
ademi
 purposes. Asit should be 
lear, no guarantee 
an be given that the software is free of programming er-rors. For that reason, users are urged to �nd methods of 
ross-
he
king their results, evenif in a partial way (verifying gauge invarian
e 
omes to mind). Please report all bugs, ma-jor and/or minor, should you �nd any. Simply send the author an e-mail to the addresspaulo.nogueira�ist.utl.pt .That is not to say that ea
h version of QGRAF doesn't have to go through many testsbefore being released. However, as the 
omplexity of a 
omputer program keeps growing itbe
omes impossible, at least in pra
ti
al terms, to analyse all the possible 
ases that may besubmitted to that program. With respe
t to the 
onsisten
y 
he
ks that were performed, aspe
ial mention is due to FORM [3℄ and its 
onvenient pattern mat
hing 
apabilities.Please do not distribute the 
ode; instead, share the anonymous ftp site for the pro-gram, whi
h is the following (as of May 2004).ftp://
fif.ist.utl.pt:/pub/qgraf/In this way the latest original version will be a

essed.The release 
onsists of the FORTRAN sour
e 
ode (�le qgraf.f), the user's guide (�leqgraf.ps), and a few auxiliary �les. As explained before, the �les whose name ends in .styare style �les.QGRAF has bene�ted from suggestions from several people, spe
ially J. Vermaseren,T. van Ritbergen, and K. Chetyrkin. I also thank G. J. van Oldenborgh for sharing hisexperien
e on FORTRAN 
ompilers.
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