herwig
is hosted by
Hepforge
,
IPPP Durham
Herwig
7.3.0
Utilities
AlphaS.h
1
// -*- C++ -*-
2
//
3
// AlphaS.h is a part of Herwig - A multi-purpose Monte Carlo event generator
4
// Copyright (C) 2018-2019 The Herwig Collaboration
5
//
6
// Herwig is licenced under version 3 of the GPL, see COPYING for details.
7
// Please respect the MCnet academic guidelines, see GUIDELINES for details.
8
//
9
#ifndef HERWIG_UtilAlphaS_H
10
#define HERWIG_UtilAlphaS_H
11
12
namespace
Herwig
{
13
14
namespace
Math {
15
22
inline
double
derivativeAlphaS
(Energy q, Energy lam,
23
unsigned
int
nf,
unsigned
int
nloop) {
24
using
Constants::pi
;
25
double
lx = log(
sqr
(q/lam));
26
double
b0 = 11. - 2./3.*nf;
27
double
b1 = 51. - 19./3.*nf;
28
double
b2 = 2857. - 5033./9.*nf + 325./27.*
sqr
(nf);
29
if
(nloop==1)
30
return
-4.*
pi
/(b0*
sqr
(lx));
31
else
if
(nloop==2)
32
return
-4.*
pi
/(b0*
sqr
(lx))*(1.+2.*b1/
sqr
(b0)/lx*(1.-2.*log(lx)));
33
else
34
return
-4.*
pi
/(b0*
sqr
(lx))*
35
(1. + 2.*b1/
sqr
(b0)/lx*(1.-2.*log(lx))
36
+ 4.*
sqr
(b1)/(
sqr
(
sqr
(b0))*
sqr
(lx))*(1. - 2.*log(lx)
37
+ 3.*(
sqr
(log(lx) - 0.5)+b2*b0/(8.*
sqr
(b1))-1.25)));
38
}
39
46
inline
double
alphaS
(Energy q, Energy lam,
47
unsigned
int
nf,
unsigned
int
nloop) {
48
using
Constants::pi
;
49
double
lx(log(
sqr
(q/lam)));
50
double
b0 = 11. - 2./3.*nf;
51
double
b1 = 51. - 19./3.*nf;
52
double
b2 = 2857. - 5033./9.*nf + 325./27.*
sqr
(nf);
53
// one loop
54
if
(nloop==1)
55
{
return
4.*
pi
/(b0*lx);}
56
// two loop
57
else
if
(nloop==2) {
58
return
4.*
pi
/(b0*lx)*(1.-2.*b1/
sqr
(b0)*log(lx)/lx);
59
}
60
// three loop
61
else
62
{
return
4.*
pi
/(b0*lx)*(1.-2.*b1/
sqr
(b0)*log(lx)/lx +
63
4.*
sqr
(b1)/(
sqr
(
sqr
(b0))*
sqr
(lx))*
64
(
sqr
(log(lx) - 0.5) + b2*b0/(8.*
sqr
(b1)) - 5./4.));}
65
}
66
67
68
}
69
70
}
71
72
#endif
Herwig::Math::alphaS
double alphaS(Energy q, Energy lam, unsigned int nf, unsigned int nloop)
The 1,2,3-loop parametrization of .
Definition:
AlphaS.h:46
Herwig::Math::derivativeAlphaS
double derivativeAlphaS(Energy q, Energy lam, unsigned int nf, unsigned int nloop)
The derivative of with respect to .
Definition:
AlphaS.h:22
Herwig
-*- C++ -*-
Definition:
BasicConsistency.h:17
ThePEG::Constants::pi
constexpr double pi
ThePEG::sqr
constexpr auto sqr(const T &x) -> decltype(x *x)
Generated on Thu Jun 20 2024 17:50:53 for Herwig by
1.9.6